63 research outputs found

    Laboratory prediction of the requirement for renal replacement in acute falciparum malaria

    Get PDF
    BACKGROUND: Acute renal failure is a common complication of severe malaria in adults, and without renal replacement therapy (RRT), it carries a poor prognosis. Even when RRT is available, delaying its initiation may increase mortality. Earlier identification of patients who will need RRT may improve outcomes. METHOD: Prospectively collected data from two intervention studies in adults with severe malaria were analysed focusing on laboratory features on presentation and their association with a later requirement for RRT. In particular, laboratory indices of acute tubular necrosis (ATN) and acute kidney injury (AKI) that are used in other settings were examined. RESULTS: Data from 163 patients were available for analysis. Whether or not the patients should have received RRT (a retrospective assessment determined by three independent reviewers) was used as the reference. Forty-three (26.4%) patients met criteria for dialysis, but only 19 (44.2%) were able to receive this intervention due to the limited availability of RRT. Patients with impaired renal function on admission (creatinine clearance < 60 ml/min) (n = 84) had their laboratory indices of ATN/AKI analysed. The plasma creatinine level had the greatest area under the ROC curve (AUC): 0.83 (95% confidence interval 0.74-0.92), significantly better than the AUCs for, urinary sodium level, the urea to creatinine ratio (UCR), the fractional excretion of urea (FeUN) and the urinary neutrophil gelatinase-associated lipocalcin (NGAL) level. The AUC for plasma creatinine was also greater than the AUC for blood urea nitrogen level, the fractional excretion of sodium (FeNa), the renal failure index (RFI), the urinary osmolality, the urine to plasma creatinine ratio (UPCR) and the creatinine clearance, although the difference for these variables did not reach statistical significance. CONCLUSIONS: In adult patients with severe malaria and impaired renal function on admission, none of the evaluated laboratory indices was superior to the plasma creatinine level when used to predict a later requirement for renal replacement therapy

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Regulation of collecting tubule adenosine triphosphatases by aldosterone and potassium.

    No full text
    To examine the precise role of potassium and aldosterone on acid-base composition and on collecting tubule ATPases, glucocorticoid-replete adrenalectomized rats were replaced with zero, physiological, or pharmacological doses of aldosterone and were fed varying potassium diets to produce hypokalemia, normokalemia, or hyperkalemia. Radiochemical measurement of ATPase activities showed that collecting tubule H/K-ATPase changed inversely with potassium and not with aldosterone whereas H-ATPase changed directly with aldosterone but not with potassium. When both enzymes changed in the same direction, alterations in acid-base composition were profound; however, when these two acidifying enzymes changed in opposite directions or when only one enzyme changed, the effect on acid-base balance was modest. Serum bicarbonate was approximately 45 meq/liter when aldosterone was high and potassium was low; it was only 29 meq/liter when aldosterone was high but potassium was normal or when aldosterone was normal and potassium was low. Our observations may help explain the metabolic alkalosis of primary aldosteronism in which aldosterone excess and hypokalemia are combined and the metabolic acidosis of aldosterone deficiency in which hypoaldosteronism and hyperkalemia are paired. The present study also demonstrated that aldosterone plays the major role in controlling Na/K-ATPase activity in cortical collecting tubule. Hypokalemia stimulates Na/K-ATPase activity in the medullary collecting tubule; this stimulatory effect of hypokalemia supports the hypothesis that the enzyme is present on the apical membrane at this site

    Regulation of collecting tubule adenosine triphosphatases by aldosterone and potassium.

    No full text

    CLINICAL PROFILE OF MALARIA WITH SPECIAL REFERENCE TO HEMATOLOGICAL AND RENAL ALTERATIONS

    No full text
    corecore