7 research outputs found

    Evaluation of acidogenesis products’ effect on biogas production performed with metagenomics and isotopic approaches

    Get PDF
    Background: During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. Results: Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%–67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. Conclusions: In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock

    Hungary and the European Union: the political implications of societal security promotion

    Get PDF
    Hungary's constitutional commitment to support kin-nationals beyond its borders (nation policy) has been a central feature of its post-1989 foreign policy and highlights a particularly important national security concern—the societal security of national identity, culture, language and tradition. This article examines Hungary's societal security concerns and the policy methods it utilises, including its EU membership and the promotion of minority rights at the European level, to help combat these concerns. It is suggested that Hungary has found it somewhat difficult to balance its societal security policy objective with internal economic demands on its welfare system and its external foreign policy objective to maintain good neighbourly relations. This article also notes that Hungary's attempts to Europeanise, or rather 'EU-ise', minority and ethnic rights issues as a means to enhance societal security for the Hungarian nation has certain political consequences for the EU. This suggests that societal security provision is an issue that cannot be overlooked when trying to understand the longer-term implications of EU eastern enlargement

    Schilddrüse

    No full text
    corecore