44 research outputs found

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Dysregulated apoptosis and NFκB expression in COPD subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NFκB (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NFκB is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NFκB activation.</p> <p>Methods</p> <p>Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NFκB was assessed using a flow cytometric method and the phosphorylation state of IκBα was carried out using the Bio-Rad Bio-Plex phosphoprotein IκBα assay.</p> <p>Results</p> <p>Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p < 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NFκB in neutrophils from COPD subjects compared to non-smokers.</p> <p>Conclusion</p> <p>These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NFκB.</p

    Decreased Neutrophil Apoptosis in Quiescent ANCA-Associated Systemic Vasculitis

    Get PDF
    Background: ANCA-Associated Systemic Vasculitis (AASV) is characterized by leukocytoclasis, accumulation of unscavenged apoptotic and necrotic neutrophils in perivascular tissues. Dysregulation of neutrophil cell death may contribute directly to the pathogenesis of AASV. less thanbrgreater than less thanbrgreater thanMethods: Neutrophils from Healthy Blood Donors (HBD), patients with AASV most in complete remission, Polycythemia Vera (PV), Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and renal transplant recipients (TP) were incubated in vitro, and the rate of spontaneous apoptosis was measured by FACS. Plasma levels of cytokines and sFAS were measured with cytometric bead array and ELISA. Expression of pro/anti-apoptotic factors, transcription factors C/EBP-alpha, C/EBP-beta and PU.1 and inhibitors of survival/JAK2-pathway were measured by real-time-PCR. less thanbrgreater than less thanbrgreater thanResults: AASV, PV and RA neutrophils had a significantly lower rate of apoptosis compared to HBD neutrophils (AASV 50 +/- 14% vs. HBD 64 +/- 11%, p andlt; 0.0001). In RA but not in AASV and PV, low apoptosis rate correlated with increased plasma levels of GM-CSF and high mRNA levels of anti-apoptotic factors Bcl-2A1 and Mcl-1. AASV patients had normal levels of G-CSF, GM-CSF and IL-3. Both C/EBP-alpha, C/EBP-beta were significantly higher in neutrophils from AASV patients than HBD. Levels of sFAS were significantly higher in AASV compared to HBD. less thanbrgreater than less thanbrgreater thanConclusion: Neutrophil apoptosis rates in vitro are decreased in AASV, RA and PV but mechanisms seem to differ. Increased mRNA levels of granulopoiesis-associated transcription factors and increased levels of sFAS in plasma were observed in AASV. Additional studies are required to define the mechanisms behind the decreased apoptosis rates, and possible connections with accumulation of dying neutrophils in regions of vascular lesions in AASV patients.Funding Agencies|Swedish Research Council|71X-15152|Crafoord Foundation||</p

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    STAT5 Is an Ambivalent Regulator of Neutrophil Homeostasis

    Get PDF
    BACKGROUND: Although STAT5 promotes survival of hematopoietic progenitors, STAT5-/- mice develop mild neutrophilia. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that in STAT5-/- mice, liver endothelial cells (LECs) autonomously secrete high amounts of G-CSF, allowing myeloid progenitors to overcompensate for their intrinsic survival defect. However, when injected with pro-inflammatory cytokines, mutant mice cannot further increase neutrophil production, display a severe deficiency in peripheral neutrophil survival, and are therefore unable to maintain neutrophil homeostasis. In wild-type mice, inflammatory stimulation induces rapid STAT5 degradation in LECs, G-CSF production by LECs and other cell types, and then sustained mobilization and expansion of long-lived neutrophils. CONCLUSION: We conclude that STAT5 is an ambivalent factor. In cells of the granulocytic lineage, it exerts an antiapoptotic function that is required for maintenance of neutrophil homeostasis, especially during the inflammatory response. In LECs, STAT5 negatively regulates granulopoiesis by directly or indirectly repressing G-CSF expression. Removal of this STAT5-imposed brake contributes to induction of emergency granulopoiesis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Severe Exercise and Exercise Training Exert Opposite Effects on Human Neutrophil Apoptosis via Altering the Redox Status

    Get PDF
    Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS) and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8) underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related parameters and mitochondria-related parameters. Our results showed that i) the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii) CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii) most effects of CME were unchanged after detraining; and iv) CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H2O2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining

    Ir-LBP, an Ixodes ricinus Tick Salivary LTB4-Binding Lipocalin, Interferes with Host Neutrophil Function

    Get PDF
    BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM), similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Eosinophil Survival and Apoptosis in Health and Disease

    Get PDF
    Eosinophilia is common feature of many disorders, including allergic diseases. There are many factors that influence the production, migration, survival and death of the eosinophil. Apoptosis is the most common form of physiological cell death and a necessary process to maintain but limit cell numbers in humans and other species. It has been directly demonstrated that eosinophil apoptosis is delayed in allergic inflammatory sites, and that this mechanism contributes to the expansion of eosinophil numbers within tissues. Among the proteins known to influence hematopoiesis and survival, expression of the cytokine interleukin-5 appears to be uniquely important and specific for eosinophils. In contrast, eosinophil death can result from withdrawal of survival factors, but also by activation of pro-apoptotic pathways via death factors. Recent observations suggest a role for cell surface death receptors and mitochondria in facilitating eosinophil apoptosis, although the mechanisms that trigger each of these death pathways remain incompletely delineated. Ultimately, the control of eosinophil apoptosis may someday become another therapeutic strategy for treating allergic diseases and other eosinophil-associated disorders
    corecore