768 research outputs found

    Adjunctive use of systematic retinal thickness map analysis to monitor disease activity in punctate inner choroidopathy

    Get PDF
    A challenge in the management of 'white dot syndromes' is the lack of sensitive objective measures of disease activity. Retinal thickness maps from spectral domain optical coherence tomography (SD-OCT) inform treatment decisions in other retinal conditions such as age-related macular degeneration and diabetic maculopathy. In this report, we demonstrate their value in providing quantitative monitoring of a patient with punctate inner choroidopathy (PIC). Retinal thickness maps referenced against a baseline scan reliably detected focal areas of increased macular volume in active PIC lesions during symptomatic episodes, highlighting these as 'hot spots' that could be quantified, providing an objective basis for treatment decisions

    Punctate Inner Choroidopathy: A Review

    Get PDF
    Punctate Inner Choroidopathy (PIC), an idiopathic inflammatory multifocal chorioretinopathy that predominantly affects young myopic women, appears to be relatively rare, but there is limited data to support accurate estimates of prevalence, and it is likely that the condition is under-diagnosed. The etiological relationship between PIC and other conditions within the 'white dot syndromes' group remains uncertain. We, like others, would suggest that PIC and multifocal choroiditis with panuveitis (MCP) represent a single disease process that is modified by host factors (including host immunoregulation) to cause the range of clinical phenotypes seen. The impact of PIC on the patient is highly variable, with outcome ranging from complete spontaneous recovery to bilateral severe sight-loss. Detection and monitoring has been greatly facilitated by modern scanning techniques, especially OCT and autofluorescence imaging, and may be enhanced by co-registration of sequential images to detect change over time. Depending on the course of disease and nature of complications, appropriate treatment may range from observation to systemic immunosuppression and anti-angiogenic therapies. PIC is a challenging condition where treatment has to be tailored to the patient's individual circumstances, the extent of disease, and the risk of progression

    Distinct Types of Fibrocyte Can Differentiate from Mononuclear Cells in the Presence and Absence of Serum

    Get PDF
    Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants

    Phases of Josephson Junction Ladders

    Full text link
    We study a Josephson junction ladder in a magnetic field in the absence of charging effects via a transfer matrix formalism. The eigenvalues of the transfer matrix are found numerically, giving a determination of the different phases of the ladder. The spatial periodicity of the ground state exhibits a devil's staircase as a function of the magnetic flux filling factor ff. If the transverse Josephson coupling is varied a continuous superconducting-normal transition in the transverse direction is observed, analogous to the breakdown of the KAM trajectories in dynamical systems.Comment: 12 pages with 3 figures, REVTE

    Patent foramen ovale presenting as visual loss

    Get PDF
    Retinal artery occlusion in an otherwise healthy, young patient is rare. In this context it is important to consider patent foramen ovale as a differential. Early referral to a cardiology specialist for diagnosis and treatment is important for preventing further ocular and non-ocular events

    Domain Walls and Phase Transitions in the Frustrated Two-Dimensional XY Model

    Full text link
    We study and compare the critical properties of the two-dimensional (2D) XY model in a transverse magnetic field with magnetic filling factors f=1/3 and f=2/5. In addition to the spin waves, the low energy excitations of the system consist of various domain walls between degenerate ground states. The lowest energy domain wall has a similar structure for both f=1/3 and f=2/5 and its properties dictate the nature of the phase transition. For f=2/5 these lowest energy walls have a negative energy for binding to each other, giving rise to a branching domain-wall structure and leading to a first order phase transition. For f=1/3 this binding energy is positive, resulting in a linear critical interface. In order to make a comparison to recent experiments, we investigate the effect of small quenched bond disorder for f=2/5. A finite-size scaling analysis of extensive Monte Carlo simulations strongly suggests that the critical exponents of the phase transition for f=1/3, and for f=2/5 with disorder, fall into the universality class of the two-dimensional Ising model.Comment: 5 pages, 3 eps figures, REVTEX, revised version with new figure

    Dynamics and stress in gravity driven granular flow

    Full text link
    We study, using simulations, the steady-state flow of dry sand driven by gravity in two-dimensions. An investigation of the microscopic grain dynamics reveals that grains remain separated but with a power-law distribution of distances and times between collisions. While there are large random grain velocities, many of these fluctuations are correlated across the system and local rearrangements are very slow. Stresses in the system are almost entirely transfered by collisions and the structure of the stress tensor comes almost entirely from a bias in the directions in which collisions occur.Comment: 4 pages, 3 eps figures, RevTe

    Critical Behavior of Frustrated Josephson Junction Arrays with Bond Disorder

    Full text link
    The scaling behavior of the current-voltage (IVIV) characteristics of a two-dimensional proximity-coupled Josephson junction array (JJA) with quenched bond disorder was investigated for frustrations f=1/5f=1/5, 1/3, 2/5, and 1/2. For all these frustrations including 1/5 and 2/5 where a strongly first-order phase transition is expected in the absence of disorder, the IVIV characteristics exhibited a good scaling behavior. The critical exponent ν\nu indicates that bond disorder may drive the phase transitions of frustrated JJA's to be continuous but not into the Ising universality class, contrary to what was observed in Monte Carlo simulations. The dynamic critical exponent zz for JJA's was found to be only 0.60 - 0.77.Comment: RevTeX4, 4 pages, 4 figures, the manuscript is replaced with the published versio

    Frustrated two-dimensional Josephson junction array near incommensurability

    Full text link
    To study the properties of frustrated two-dimensional Josephson junction arrays near incommensurability, we examine the current-voltage characteristics of a square proximity-coupled Josephson junction array at a sequence of frustrations f=3/8, 8/21, 0.382 ((35)/2)(\approx (3-\sqrt{5})/2), 2/5, and 5/12. Detailed scaling analyses of the current-voltage characteristics reveal approximately universal scaling behaviors for f=3/8, 8/21, 0.382, and 2/5. The approximately universal scaling behaviors and high superconducting transition temperatures indicate that both the nature of the superconducting transition and the vortex configuration near the transition at the high-order rational frustrations f=3/8, 8/21, and 0.382 are similar to those at the nearby simple frustration f=2/5. This finding suggests that the behaviors of Josephson junction arrays in the wide range of frustrations might be understood from those of a few simple rational frustrations.Comment: RevTex4, 4 pages, 4 eps figures, to appear in Phys. Rev.
    corecore