31 research outputs found

    Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schr\"odinger system

    Full text link
    We study a nonlinear system of partial differential equations in which a complex field (the Higgs field) evolves according to a nonlinear Schroedinger equation, coupled to an electromagnetic field whose time evolution is determined by a Chern-Simons term in the action. In two space dimensions, the Chern-Simons dynamics is a Galileo invariant evolution for A, which is an interesting alternative to the Lorentz invariant Maxwell evolution, and is finding increasing numbers of applications in two dimensional condensed matter field theory. The system we study, introduced by Manton, is a special case (for constant external magnetic field, and a point interaction) of the effective field theory of Zhang, Hansson and Kivelson arising in studies of the fractional quantum Hall effect. From the mathematical perspective the system is a natural gauge invariant generalization of the nonlinear Schroedinger equation, which is also Galileo invariant and admits a self-dual structure with a resulting large space of topological solitons (the moduli space of self-dual Ginzburg-Landau vortices). We prove a theorem describing the adiabatic approximation of this system by a Hamiltonian system on the moduli space. The approximation holds for values of the Higgs self-coupling constant close to the self-dual (Bogomolny) value of 1. The viability of the approximation scheme depends upon the fact that self-dual vortices form a symplectic submanifold of the phase space (modulo gauge invariance). The theorem provides a rigorous description of slow vortex dynamics in the near self-dual limit.Comment: Minor typos corrected, one reference added and DOI give

    Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics

    Get PDF
    For the equations of elastodynamics with polyconvex stored energy, and some related simpler systems, we define a notion of dissipative measure-valued solution and show that such a solution agrees with a classical solution with the same initial data when such a classical solution exists. As an application of the method we give a short proof of strong convergence in the continuum limit of a lattice approximation of one dimensional elastodynamics in the presence of a classical solution. Also, for a system of conservation laws endowed with a positive and convex entropy, we show that dissipative measure-valued solutions attain their initial data in a strong sense after time averaging

    phi^4 Kinks - Gradient Flow and Dynamics

    Full text link
    The symmetric dynamics of two kinks and one antikink in classical (1+1)-dimensional ϕ4\phi^4 theory is investigated. Gradient flow is used to construct a collective coordinate model of the system. The relationship between the discrete vibrational mode of a single kink, and the process of kink-antikink pair production is explored.Comment: 23 pages, LaTex, 11 eps figures. We have added some clarification of our metho

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure
    corecore