36 research outputs found
“Interactive Technology Assessment” and Beyond: the Field Trial of Genetically Modified Grapevines at INRA-Colmar
International audienc
Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone
Assessing the impact of genetically modified plants on the environment using NGS; a case study on transgenic grapevine rootstocks expressing viral coat protein and bacterial nptII transgenes
Assessing the impact of genetically modified plants on the environment using NGS; a case study on transgenic grapevine rootstocks expressing viral coat protein and bacterial nptII transgenes
Assessing the impact of genetically modified plants on the environment using NGS; a case study on transgenic grapevine rootstocks expressing viral coat protein and bacterial nptII transgenes
Survival and electrotransformation of Pseudomonas syringae strains under simulated cloud-like conditions.
International audienceTo diversify their genetic material, and thereby allow adaptation to environmental disturbances and colonization of new ecological niches, bacteria use various evolutionary processes, including the acquisition of new genetic material by horizontal transfer mechanisms such as conjugation, transduction and transformation. Electrotransformation mediated by lightning-related electrical phenomena may constitute an additional gene-transfer mechanism occurring in nature. The presence in clouds of bacteria such as Pseudomonas syringae capable of forming ice nuclei that lead to precipitation, and that are likely to be involved in triggering lightning, led us to postulate that natural electrotransformation in clouds may contribute to the adaptive potential of these bacteria. Here, we quantify the survival rate of 10 P. syringae strains in liquid and icy media under such electrical pulses and their capacity to acquire exogenous DNA. In comparison to two other bacteria (Pseudomonas sp. N3 and Escherichia coli TOP10), P. syringae CC0094 appears to be best adapted for survival and for genetic electrotransformation under these conditions, which suggests that this bacterium would be able to survive and to get a boost in its adaptive potential while being transported in clouds and falling back to Earth with precipitation from storms
Characterising Essential Fish Habitat using spatio‐temporal analysis of fishery data: A case study of the European seabass spawning areas
Fish habitats sustain essential functions for fish to complete their life cycle, such as feeding, growing and spawning. Conservation is crucial to maintain fish populations and their exploitation. Since 2013, the spawning stock biomass of the northern stock of European seabass (Dicentrarchus labrax) has been in a worrying state. A series of low recruitments with a persistently high level of fishing has been blamed, raising concerns about the processes involved in seabass reproduction and settlement in nurseries. Here, we characterise seabass spawning areas along the French Atlantic coast using vessel monitoring system (VMS) data. A non‐linear geostatistical approach was applied, from 2008 to 2014, to detect locations where seabass aggregate for spawning. Occurrence maps of spawning distribution were combined into probability maps to quantify the seasonal and inter‐annual variability and to highlight recurrent, occasional and unfavourable spawning areas. We identified three main spawning areas: the Rochebonne Plateau in the Bay of Biscay, the Western English Channel and the North of the Cotentin peninsula in the Eastern English Channel. The correlative link between this geographical distribution and environmental factors was investigated using a Bayesian spatio‐temporal model. The spatio‐temporal structure accounted for the vast majority of the model predictive skills, whereas environmental covariates had a negligible effect. Our model revealed the persistence of the spatial distribution of spawning areas with intra‐ and inter‐annual variability. Offshore areas appear to be essential spawning areas for seabass, and should be considered in spatial management strategies
Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage
Characterising Essential Fish Habitat using spatio‐temporal analysis of fishery data: A case study of the European seabass spawning areas
Persistence of Extracellular DNA in River Sediment Facilitates Antibiotic Resistance Gene Propagation
The propagation of antibiotic resistance genes (ARGs) represents a global threat to both human health and food security. Assessment of ARG reservoirs and persistence is therefore critical for devising and evaluating strategies to mitigate ARG propagation. This study developed a novel, internal standard method to extract extracellular DNA (eDNA) and intracellular DNA (iDNA) from water and sediments, and applied it to determine the partitioning of ARGs in the Haihe River basin in China, which drains an area of intensive antibiotic use. The concentration of eDNA was higher than iDNA in sediment samples, likely due to the enhanced persistence of eDNA when associated with clay particles and organic matter. Concentrations of sul1, sul2, tetW, and tetT antibiotic resistance genes were significantly higher in sediment than in water, and were present at higher concentrations as eDNA than as iDNA in sediment. Whereas ARGs (frequently located on plasmid DNA) were detected for over 20 weeks, chromosomally encoded 16S rRNA genes were undetectable after 8 weeks, suggesting higher persistence of plasmid-borne ARGs in river sediment. Transformation of indigenous bacteria with added extracellular ARG (i.e., kanamycin resistance genes) was also observed. Therefore, this study shows that extracellular DNA in sediment is a major ARG reservoir that could facilitate antibiotic resistance propagation. © 2013 American Chemical Society
