1,318 research outputs found

    Pacing-induced regional differences in adenosine receptors mRNA expression in a Swine model of dilated cardiomyopathy.

    Get PDF
    The adenosinergic system is essential in the mediation of intrinsic protection and myocardial resistance to insult; it may be considered a cardioprotective molecule and adenosine receptors (ARs) represent potential therapeutic targets in the setting of heart failure (HF). The aim of the study was to test whether differences exist between mRNA expression of ARs in the anterior left ventricle (LV) wall (pacing site: PS) compared to the infero septal wall (opposite region: OS) in an experimental model of dilated cardiomyopathy. Cardiac tissue was collected from LV PS and OS of adult male minipigs with pacing-induced HF (n = 10) and from a control group (C, n = 4). ARs and TNF-α mRNA expression was measured by Real Time-PCR and the results were normalized with the three most stably expressed genes (GAPDH, HPRT1, TBP). Immunohistochemistry analysis was also performed. After 3 weeks of pacing higher levels of expression for each analyzed AR were observed in PS except for A1R (A1R: C = 0.6±0.2, PS = 0.1±0.04, OS = 0.04±0.01, p<0.0001 C vs. PS and OS respectively; A2AR: C = 1.04±0.59, PS = 2.62±0.79, OS = 2.99±0.79; A2BR: C = 1.2±0.1, PS = 5.59±2.3, OS = 1.59±0.46; A3R: C = 0.76±0.18, PS = 8.40±3.38, OS = 4.40±0.83). Significant contractile impairment and myocardial hypoperfusion were observed at PS after three weeks of pacing as compared to OS. TNF-α mRNA expression resulted similar in PS (6.3±2.4) and in OS (5.9±2.7) although higher than in control group (3.4±1.5). ARs expression was mainly detected in cardiomyocytes. This study provided new information on ARs local changes in the setting of LV dysfunction and on the role of these receptors in relation to pacing-induced abnormalities of myocardial perfusion and contraction. These results suggest a possible therapeutic role of adenosine in patients with HF and dyssynchronous LV contraction

    Connexin 26 Expression in Mammalian Cardiomyocytes

    Get PDF
    Connexins are a family of membrane-spanning proteins named according to their molecular weight. They are known to form membrane channels mediating cell-cell communication, which play an essential role in the propagation of electrical activity in the heart. Cx26 has been described in a number of tissues but not in the heart, and its mutations are frequently associated with deafness and skin diseases. The aim of this study was to assess the possible Cx26 expression in heart tissues of different mammalian species and to demonstrate its localization at level of cardiomyocytes. Samples of pig, human and rat heart and H9c2 cells were used for our research. Immunohistochemical and molecular biology techniques were employed to test the expression of Cx26. Interestingly, this connexin was found in cardiomyocytes, at level of clusters scattered over the cell cytoplasm but not at level of the intercalated discs where the other cardiac connexins are usually located. Furthermore, the expression of Cx26 in H9c2 myoblast cells increased when they were differentiated into cardiac-like phenotype. To our knowledge, the expression of Cx26 in pig, human and rat has been demonstrated for the first time in the present paper

    High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction.

    Get PDF
    Abstract BACKGROUND: Vasculogenesis is a hallmark of myocardial restoration. Post-ischemic late remodeling is associated with pathology and function worsening. At the same time, neo-vasculogenesis helps function improving and requires the release of vascular endothelial growth factor type A (VEGF-A). The vasculogenic role of C-type natriuretic peptide (CNP), a cardiac paracrine hormone, is unknown in infarcted hearts with preserved left ventricular (LV) ejection fraction (EF). We explored whether myocardial VEGF-dependent vasculogenesis is affected by CNP. METHODS AND RESULTS: To this end, infarcted swine hearts were investigated by magnetic resonance imaging (MRI), histological and molecular assays. At the fourth week, MRI showed that transmural myocardial infarction (MI) affected approximately 13% of the LV wall mass without impairing global function (LVEF>50%, n=9). Increased fibrosis, metalloproteases and capillary density were localized to the infarct border zone (BZ), and were associated with increased expression of CNP (p=0.03 vs. remote zone (RZ)), VEGF-A (p<0.001 vs. RZ), BNP, a marker of myocardial dysfunction (p<0.01 vs. RZ) and the endothelial marker, factor VIII-related antigen (p<0.01 vs. RZ). In vitro, CNP 1000 nM promoted VEGF-dependent vasculogenesis without affecting the cell growth and survival, although CNP 100 nM or a high concentration of VEGF-A halted vascular growth. CONCLUSIONS: CNP expression is locally increased in infarct remodeled myocardium in the presence of dense capillary network. The vasculogenic response requires the co-exposure to high concentration of CNP and VEGF-A. Our data will be helpful to develop combined myocardial delivery of CNP and VEGF-A genes in order to reverse the remodeling process

    Association of pre-operative interleukin-6 levels with Interagency Registry for Mechanically Assisted Circulatory Support profiles and intensive care unit stay in left ventricular assist device patients

    Get PDF
    BACKGROUND: Inflammatory mechanisms are associated with worse prognosis in end-stage heart failure (ESHF) patients who require left ventricular assist device (LVAD) support. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profiles describe patient condition at pre-implant and outcome. This study assessed the relationship among inflammation patterns and INTERMACS profiles in LVAD recipients. METHOD: Thirty ESHF patients undergoing LVAD implantation as bridge to transplant were enrolled. Blood and urine samples were collected pre-operatively and serially up to 2 weeks post-operatively for assessment of inflammatory markers (plasma levels of interleukin [IL]-6, IL-8, IL-10, and osteopontin, a cardiac inflammatory-remodeling marker; and the urine neopterin/creatinine ratio, a monocyte activation marker). Multiorgan function was evaluated by the total sequential organ failure assessment (tSOFA) score. Outcomes of interest were early survival, post-LVAD tSOFA score, and intensive care unit (ICU) length of stay. RESULTS: Fifteen patients had INTERMACS profiles 1 or 2 (Group A), and 15 had profiles 3 or 4 (Group B). At pre-implant, only IL-6 levels and the IL-6/IL-10 ratio were higher in Group A vs B. After LVAD implantation, neopterin/creatinine ratio and IL-8 levels increased more in Group A vs B. Osteopontin levels increased significantly only in Group B. The tSOFA score at 2 weeks post-LVAD and ICU duration were related with pre-implant IL-6 levels. CONCLUSIONS: The INTERMACS profiles reflect the severity of the pre-operative inflammatory activation and the post-implant inflammatory response, affecting post-operative tSOFA score and ICU stay. Therefore, inflammation may contribute to poor outcome in patients with severe INTERMACS profile
    corecore