3,680 research outputs found

    Review of AIDS development

    Get PDF
    The operation and implementation of the aircraft integrated data system AIDS are described. The system is described as an engineering tool with strong emphasis on analysis of recorded information. The AIDS is primarily directed to the monitoring of parameters related to: the safety of the flight; the performance of the aircraft; the performance of the flight guidance system; and the performance and condition of the engines. The system provide short term trend analysis on a trend chart that is updated by the flight engineer on every flight that lasts more than 4 flight hours. Engine data prints are automatically presented during take-off and in the case of limit excedance, e.g., the print shows an automatically reported impending hotstarts on engine nr. 1. Other significant features are reported

    Universal dS vacua in STU-models

    Full text link
    Stable de Sitter solutions in minimal F-term supergravity are known to lie close to Minkowski critical points. We consider a class of STU-models arising from type IIB compactifications with generalised fluxes. There, we apply an analytical method for solving the equations of motion for the moduli fields based on the idea of treating derivatives of the superpotential of different orders up to third as independent objects. In particular, supersymmetric and no-scale Minkowski solutions are singled out by physical reasons. Focusing on the study of dS vacua close to supersymmetric Minkowski points, we are able to elaborate a complete analytical treatment of the mass matrix based on the sGoldstino bound. This leads to a class of interesting universal dS vacua. We finally explore a similar possibility around no-scale Minkowski points and discuss some examples.Comment: 31 pages, 4 figures and 7 table

    Stability of flux vacua in the presence of charged black holes

    Full text link
    In this letter we consider a charged black hole in a flux compactification of type IIB string theory. Both the black hole and the fluxes will induce potentials for the complex structure moduli. We choose the compact dimensions to be described locally by a deformed conifold, creating a large hierarchy. We demonstrate that the presence of a black hole typically will not change the minimum of the moduli potential in a substantial way. However, we also point out a couple of possible loop-holes, which in some cases could lead to interesting physical consequences such as changes in the hierarchy.Comment: 14 pages. Published versio

    The stringy nature of the 2d type-0A black hole

    Full text link
    We investigate the thermodynamics of the RR charged two-dimensional type-0A black hole background at finite temperature, and compare with known 0A matrix model results. It has been claimed that there is a disagreement for the free energy between the spacetime and the dual matrix model. Here we find that this discrepancy is sensitive to how the cutoff is implemented on the spacetime side. In particular, the disagreement is resolved once we put the cutoff at a fixed distance away from the horizon, as opposed to a fixed position in space. Furthermore, the mass and the entropy of the black hole itself add up to an analytic contribution to the free energy, which is precisely reproduced by the 0A matrix model. We also use results from the 0A matrix model to predict the next to leading order contribution to the entropy of the black hole. Finally, we note that the black hole is characterized by a Hagedorn growth in its density of states below the Hagedorn temperature. This, together with other results, suggests there is a phase transition at this temperature.Comment: 1+21 pages; v2: Substantial changes in the body of the paper, main results the same. Clarified discussion on the thermodynamics, added section on a phase transition, references added. v3: Typos corrected. v4: Final version, to appear in JHE

    10 + 1 to 3 + 1 in an Early Universe with mutually BPS Intersecting Branes

    Full text link
    We assume that the early universe is homogeneous, anisotropic, and is dominated by the mutually BPS 22'55' intersecting branes of M theory. The spatial directions are all taken to be toroidal. Using analytical and numerical methods, we study the evolution of such an universe. We find that, asymptotically, three spatial directions expand to infinity and the remaining spatial directions reach stabilised values. Any stabilised values can be obtained by a fine tuning of initial brane densities. We give a physical description of the stabilisation mechanism. Also, from the perspective of four dimensional spacetime, the effective four dimensional Newton's constant G_4 is now time varying. Its time dependence will follow from explicit solutions. We find in the present case that, asymptotically, G_4 exhibits characteristic log periodic oscillations.Comment: Latex file, 59 pages, 7 figures. Version 2: A minor correction and a reference added. Version 3: Critical discussion of the main assumptions is added in sections I and VIII; two references added. To appear in Physical Review

    Localised anti-branes in non-compact throats at zero and finite T

    Full text link
    We investigate the 3-form singularities that are typical to anti-brane solutions in supergravity and check whether they can be cloaked by a finite temperature horizon. For anti-D3-branes in the Klebanov-Strassler background, this was already shown numerically to be impossible when the branes are partially smeared. In this paper, we present analytic arguments that also localised branes remain with singular 3-form fluxes at both zero and finite temperature. These results may have important, possibly fatal, consequences for constructions of meta-stable de Sitter vacua through uplifting.Comment: 18 + 9 page

    Holographic Superconductors with Lifshitz Scaling

    Full text link
    Black holes in asymptotically Lifshitz spacetime provide a window onto finite temperature effects in strongly coupled Lifshitz models. We add a Maxwell gauge field and charged matter to a recently proposed gravity dual of 2+1 dimensional Lifshitz theory. This gives rise to charged black holes with scalar hair, which correspond to the superconducting phase of holographic superconductors with z > 1 Lifshitz scaling. Along the way we analyze the global geometry of static, asymptotically Lifshitz black holes at arbitrary critical exponent z > 1. In all known exact solutions there is a null curvature singularity in the black hole region, and, by a general argument, the same applies to generic Lifshitz black holes.Comment: 23 pages, 4 figures; v2: added references; v3: matches published versio

    Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory

    Get PDF
    We introduce photons in Partially Quenched Chiral Perturbation Theory and calculate the resulting electromagnetic loop-corrections at NLO for the charged meson masses and decay constants. We also present a numerical analysis to indicate the size of the different corrections. We show that several phenomenologically relevant quantities can be calculated consistently with photons which couple only to the valence quarks, allowing the use of gluon configurations produced without dynamical photons.Comment: 11 page

    On Thermalization in de Sitter Space

    Full text link
    We discuss thermalization in de Sitter space and argue, from two different points of view, that the typical time needed for thermalization is of order R3/lpl2R^{3}/l_{pl}^{2}, where RR is the radius of the de Sitter space in question. This time scale gives plenty of room for non-thermal deviations to survive during long periods of inflation. We also speculate in more general terms on the meaning of the time scale for finite quantum systems inside isolated boxes, and comment on the relation to the Poincar\'{e} recurrence time.Comment: 14 pages, 2 figures, latex, references added. Improved discussion in section 3 adde

    Three-Flavor Partially Quenched Chiral Perturbation Theory at NNLO for Meson Masses and Decay Constants

    Full text link
    We discuss Partially Quenched Chiral Perturbation Theory (PQχ\chiPT) and possible fitting strategies to Lattice QCD data at next-to-next-to-leading order (NNLO) in the mesonic sector. We also present a complete calculation of the masses of the charged pseudoscalar mesons, in the supersymmetric formulation of PQχ\chiPT. Explicit analytical results are given for up to three nondegenerate sea quark flavors, along with the previously unpublished expression for the pseudoscalar meson decay constant for three nondegenerate sea quark flavors. The numerical analysis in this paper demonstrates that the corrections at NNLO are sizable, as expected from earlier work.Comment: 31 pages, numerical discussion extended including convergence NLO to NNL
    • …
    corecore