283 research outputs found

    De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa.

    Get PDF
    BackgroundRetinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.MethodsVariant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.Results and conclusionsA total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon

    Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel

    Get PDF
    UNLABELLED: X-linked retinitis pigmentosa (XLRP) is a rare inherited retinal disease manifesting as impaired night vision and peripheral vision loss that progresses to legal blindness. Although several trials of ocular gene therapy for XLRP have been conducted or are in progress, there is currently no approved treatment. In July 2022, the Foundation Fighting Blindness convened an expert panel to examine relevant research and make recommendations for overcoming the challenges and capitalizing on the opportunities in conducting clinical trials of RPGR-targeted therapy for XLRP. Data presented concerned RPGR structure and mutation types known to cause XLRP, RPGR mutation-associated retinal phenotype diversity, patterns in genotype/phenotype relationships, disease onset and progression from natural history studies, and the various functional and structural tests used to monitor disease progression. Panel recommendations include considerations, such as genetic screening and other factors that can impact clinical trial inclusion criteria, the influence of age on defining and stratifying participant cohorts, the importance of conducting natural history studies early in clinical development programs, and the merits and drawbacks of available tests for measuring treatment outcomes. We recognize the need to work with regulators to adopt clinically meaningful end points that would best determine the efficacy of a trial. Given the promise of RPGR-targeted gene therapy for XLRP and the difficulties encountered in phase III clinical trials to date, we hope these recommendations will help speed progress to finding a cure. TRANSLATIONAL RELEVANCE: Examination of relevant data and recommendations for the successful clinical development of gene therapies for RPGR-associated XLRP

    Identification of a Novel Large Multigene Deletion and a Frameshift Indel in PDE6B as the Underlying Cause of Early-Onset Recessive Rod-Cone Degeneration

    Get PDF
    A family, with two affected identical twins with early-onset recessive inherited retinal degeneration, was analyzed to determine the underlying genetic cause of pathology. Exome sequencing revealed a rare and previously reported causative variant (c.1923_1969delinsTCTGGG; p.Asn643Glyfs*29) in th

    North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    Get PDF
    PURPOSE: To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). METHODS: A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. RESULTS: Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. CONCLUSIONS: The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13, not CCNC, is the cause of NCMD mapped to the MCDR1 locus

    Accurate and exact CNV identification from targeted high-throughput sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data.</p> <p>Results</p> <p>Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate.</p> <p>Conclusions</p> <p>Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.</p

    Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry.

    Get PDF
    PURPOSE: Retinitis pigmentosa is a Mendelian disease with a very elevated genetic heterogeneity. Most mutations are responsible for less than 1% of cases, making molecular diagnosis a multigene screening procedure. In this study, we assessed whether direct testing of specific alleles could be a valuable screening approach in cases characterized by prevalent founder mutations. METHODS: We screened 275 North American patients with recessive/isolate retinitis pigmentosa for two mutations: an Alu insertion in the MAK gene and the p.Lys42Glu missense in the DHDDS gene. All patients were unrelated; 35 reported Jewish ancestry and the remainder reported mixed ethnicity. RESULTS: We identified the MAK and DHDDS mutations homozygously in only 2.1% and 0.8%, respectively, of patients of mixed ethnicity, but in 25.7% and 8.6%, respectively, of cases reporting Jewish ancestry. Haplotype analyses revealed that inheritance of the MAK mutation was attributable to a founder effect. CONCLUSION: In contrast to most mutations associated with retinitis pigmentosa-which are, in general, extremely rare-the two alleles investigated here cause disease in approximately one-third of North American patients reporting Jewish ancestry. Therefore, their screening constitutes an alternative procedure to large-scale tests for patients belonging to this ethnic group, especially in time-sensitive situations.Genet Med 17 4, 285-290
    corecore