589 research outputs found

    The formation number of vortex rings formed in uniform background co-flow

    Get PDF
    The formation of vortex rings generated by an impulsively started jet in the presence of uniform background co-flow is studied experimentally to extend previous results. A piston–cylinder mechanism is used to generate the vortex rings and the co-flow is supplied through a transparent shroud surrounding the cylinder. Digital particle image velocimetry (DPIV) is used to measure the development of the ring vorticity and its eventual pinch off from the generating jet for ratios of the co-flow to jet velocity (Rv)R_{v}) in the range 0 – 0.85. The formation time scale for the ring to obtain maximal circulation and pinch off from the generating jet, called the formation number (FF), is determined as a function of RvR_{v} using DPIV measurements of circulation and a generalized definition of dimensionless discharge time or ‘formation time’. Both simultaneous initiation and delayed initiation of co-flow are considered. In all cases, a sharp drop in FF (taking place over a range of 0.1 in RvR_{v}) is centred around a critical velocity ratio (RcritR_{crit}). As the initiation of co-flow was delayed, the magnitude of the drop in FF and the value of RcritR_{crit} decreased. A kinematic model based on the relative velocities of the forming ring and jet shear layer is formulated and correctly predicts vortex ring pinch off for Rv>RcritR_{v} \,{>}\, R_{crit}. The results of the model indicate the reduction in FF at large RvR_{v} is directly related to the increased convective velocity provided to the ring by the co-flow

    Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow

    Get PDF
    Vortex rings were formed with a piston-cylinder mechanism in the presence of uniform background co-flow supplied through a shroud surrounding the cylinder. The jet and co-flow were started simultaneously. Ratios of the co-flow to jet velocity (Rv) in the range 0–1 were considered. The formation number (F) as a function of Rv was determined using the procedure of Gharib et al. [J. Fluid Mech. 360, 121 (1998)] and a generalized definition of formation time. The results show a sharp decrease in F as Rv increases from 0.5–0.75, suggesting possible performance limitations for pulsed-jet propulsion

    Electric Circuit Simulation of Floquet Topological Insulators

    Full text link
    We present a method for simulating any non-interacting and time-periodic tight-binding Hamiltonian in Fourier space using electric circuits made of inductors and capacitors. We first map the time-periodic Hamiltonian to a Floquet Hamiltonian, which converts the time dimension into a Floquet dimension. In electric circuits, this Floquet dimension is simulated as an extra spatial dimension without any time dependency in the electrical elements. The number of replicas needed in the Floquet Hamiltonian depends on the frequency and strength of the drive. We also demonstrate that we can detect the topological edge states (including the anomalous edge states in the dynamical gap) in an electric circuit by measuring the two-point impedance between the nodes. Our method paves a simple and promising way to explore and control Floquet topological phases in electric circuits.Comment: 6 pages, 5 figure

    Transport and stirring induced by vortex formation

    Get PDF
    The purpose of this study is to analyse the transport and stirring of fluid that occurs owing to the formation and growth of a laminar vortex ring. Experimental data was collected upstream and downstream of the exit plane of a piston-cylinder apparatus by particle-image velocimetry. This data was used to compute Lagrangian coherent structures to demonstrate how fluid is advected during the transient process of vortex ring formation. Similar computations were performed from computational fluid dynamics (CFD) data, which showed qualitative agreement with the experimental results, although the CFD data provides better resolution in the boundary layer of the cylinder. A parametric study is performed to demonstrate how varying the piston-stroke length-to-diameter ratio affects fluid entrainment during formation. Additionally, we study how regions of fluid are stirred together during vortex formation to help establish a quantitative understanding of the role of vortical flows in mixing. We show that identification of the flow geometry during vortex formation can aid in the determination of efficient stirring. We compare this framework with a traditional stirring metric and show that the framework presented in this paper is better suited for understanding stirring/mixing in transient flow problems. A movie is available with the online version of the paper

    Functional Morphology and Fluid Interactions During Early Development of the Scyphomedusa Aurelia aurita

    Get PDF
    Scyphomedusae undergo a predictable ontogenetic transition from a conserved, universal larval form to a diverse array of adult morphologies. This transition entails a change in bell morphology from a highly discontinuous ephyral form, with deep clefts separating eight discrete lappets, to a continuous solid umbrella-like adult form. We used a combination of kinematic, modeling, and flow visualization techniques to examine the function of the medusan bell throughout the developmental changes of the scyphomedusa Aurelia aurita. We found that flow around swimming ephyrae and their lappets was relatively viscous (1 < Re < 10) and, as a result, ephyral lappets were surrounded by thick, overlapping boundary layers that occluded flow through the gaps between lappets. As medusae grew, their fluid environment became increasingly influenced by inertial forces (10 < Re < 10,000) and, simultaneously, clefts between the lappets were replaced by organic tissue. Hence, although the bell undergoes a structural transition from discontinuous (lappets with gaps) to continuous (solid bell) surfaces during development, all developmental stages maintain functionally continuous paddling surfaces. This developmental pattern enables ephyrae to efficiently allocate tissue to bell diameter increase via lappet growth, while minimizing tissue allocation to inter-lappet spaces that maintain paddle function due to boundary layer overlap

    Floquet states and optical conductivity of an irradiated two dimensional topological insulator

    Full text link
    We study the topology of the Floquet states and time-averaged optical conductivity of the lattice model of a thin topological insulator subject to a circularly polarized light using the extended Kubo formalism. Two driving regimes, the off-resonant and on-resonant, and two models for the occupation of the Floquet states, the ideal and mean-energy occupation, are considered. In the ideal occupation, the real part of DC optical Hall conductivity is shown to be quantized while it is not quantized for the mean energy distribution. The optical transitions in the Floquet band structure depend strongly on the occupation and also the optical weight which consequently affect all components of optical conductivity. At high frequency regime, we present an analytical calculation of the effective Hamiltonian and also its phase diagram which depends on the tunneling energy between two surfaces. The topology of the system shows rich phases when it is irradiated by a weak on-resonant drive giving rise to emergence of anomalous edge states.Comment: 11 pages, 8 figure

    Genetic characterization of Echinococcus granulosus from a large number of formalin-fixed, paraffin-embedded tissue samples of human isolates in Iran

    No full text
    Cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus, presents an important medical and veterinary problem globally, including that in Iran. Different genotypes of E. granulosus have been reported from human isolates worldwide. This study identifies the genotype of the parasite responsible for human hydatidosis in three provinces of Iran using formalin-fixed paraffin-embedded tissue samples. In this study, 200 formalin-fixed paraffin-embedded tissue samples from human CE cases were collected from Alborz, Tehran, and Kerman provinces. Polymerase chain reaction amplification and sequencing of the partial mitochondrial cytochrome c oxidase subunit 1 gene were performed for genetic characterization of the samples. Phylogenetic analysis of the isolates from this study and reference sequences of different genotypes was done using a maximum likelihood method. In total, 54.4%, 0.8%, 1%, and 40.8% of the samples were identified as the G1, G2, G3, and G6 genotypes, respectively. The findings of the current study confirm the G1 genotype (sheep strain) to be the most prevalent genotype involved in human CE cases in Iran and indicates the high prevalence of the G6 genotype with a high infectivity for humans. Furthermore, this study illustrates the first documented human CE case in Iran infected with the G2 genotype. Copyright © 2015 by The American Society of Tropical Medicine and Hygiene
    corecore