7,170 research outputs found

    Variations in the Cyclotron Resonant Scattering Features during 2011 outburst of 4U 0115+63

    Full text link
    We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low energy coverage allowed us to characterize the broadband continuum and detect the CRSFs. We find that the broadband continuum is adequately described by a combination of a low temperature (kT ~ 0.8 keV) blackbody and a power-law with high energy cutoff (Ecut ~ 5.4 keV) without the need for a broad Gaussian at ~ 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (< 3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at ~ 11 keV and ~ 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anti-correlation of line energy with luminosity could be due to modelling of these two independent line sets (~ 11 keV and ~ 15 keV) as a single CRSF.Comment: 12 pages, 8 figures (4 in colour), 6 tables. Accepted for publication in MNRAS. Typos corrected, Figure 8 changed and some changes to draf

    First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories

    Full text link
    The first law of black hole mechanics is derived from the Einstein-Maxwell (EM) Lagrangian by comparing two infinitesimally nearby stationary black holes. With similar arguments, the first law of black hole mechanics in Einstein-Yang-Mills (EYM) theory is also derived.Comment: Modified version, major changes made in the introduction. 14 pages, no figur

    Tracing very high energy neutrinos from cosmological distances in ice

    Full text link
    Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above PeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.Comment: 27 pages, 19 figure

    Magnetic anomalies in Gd6Co1.67Si3 and Tb6Co1.67Si3

    Get PDF
    The compounds, Gd6Co1.67Si3 and Tb6Co1.67Si3, recently reported to form in a Ce6Ni2Si3-derived hexagonal structure (space group: P6_3 / m) and to order magnetically below 295 and 190 K respectively, have been investigated by detailed magnetization (M) studies in the temperature interval 1.8-330 K as a function of magnetic field (H). The points of emphasis are: We observe multiple steps in the M(H) curve for the Tb compound at 1.8 K while increasing H, but these steps do not appear in the reverse cycle of H. At higher temperatures, such steps are absent. However, this 'staircase' behavior of M(H) is not observed for the Gd compound at any temperature and the isothermal magnetization is not hysteretic unlike in Tb compound. From the M(H) data measured at close intervals of temperature, we have derived isothermal entropy change (Delta S) and it is found that Delta S follows a theoretically predicted H^2/3-dependence

    Homogeneous Relaxation at Strong Coupling from Gravity

    Full text link
    Homogeneous relaxation is a ubiquitous phenomenon in semiclassical kinetic theories where the quasiparticles are distributed uniformly in space, and the equilibration involves only their velocity distribution. For such solutions, the hydrodynamic variables remain constant. We construct asymptotically AdS solutions of Einstein's gravity dual to such processes at strong coupling, perturbatively in the amplitude expansion, where the expansion parameter is the ratio of the amplitude of the non-hydrodynamic shear-stress tensor to the pressure. At each order, we sum over all time derivatives through exact recursion relations. We argue that the metric has a regular future horizon, order by order in the amplitude expansion, provided the shear-stress tensor follows an equation of motion. At the linear order, this equation of motion implies that the metric perturbations are composed of zero wavelength quasinormal modes. Our method allows us to calculate the non-linear corrections to this equation perturbatively in the amplitude expansion. We thus derive a special case of our previous conjecture on the regularity condition on the boundary stress tensor that endows the bulk metric with a regular future horizon, and also refine it further. We also propose a new outlook for heavy-ion phenomenology at RHIC and ALICE.Comment: 60 pages, a section titled "Outlook for RHIC and ALICE" has been added, accepted for publication in Physical Review

    Entropy of Constant Curvature Black Holes in General Relativity

    Get PDF
    We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in the text and the reference

    A Mott Glass to Superfluid Transition for Random Bosons in Two Dimensions

    Get PDF
    We study the zero temperature superfluid-insulator transition for a two-dimensional model of interacting, lattice bosons in the presence of quenched disorder and particle-hole symmetry. We follow the approach of a recent series of papers by Altman, Kafri, Polkovnikov, and Refael, in which the strong disorder renormalization group is used to study disordered bosons in one dimension. Adapting this method to two dimensions, we study several different species of disorder and uncover universal features of the superfluid-insulator transition. In particular, we locate an unstable finite disorder fixed point that governs the transition between the superfluid and a gapless, glassy insulator. We present numerical evidence that this glassy phase is the incompressible Mott glass and that the transition from this phase to the superfluid is driven by percolation-type process. Finally, we provide estimates of the critical exponents governing this transition.Comment: (24 pages + 7 page appendix, 28 figures) This version has been accepted to PRB. We have acquired new data that resolves the contradiction between two estimates of the critical exponents in the earlier version of the pape

    On the Noether charge form of the first law of black hole mechanics

    Get PDF
    The first law of black hole mechanics was derived by Wald in a general covariant theory of gravity for stationary variations around a stationary black hole. It is formulated in terms of Noether charges, and has many advantages. In this paper several issues are discussed to strengthen the validity of the Noether charge form of the first law. In particular, a gauge condition used in the derivation is justified. After that, we justify the generalization to non-stationary variations done by Iyer-Wald.Comment: Latex, 16 pages, arguments on gauge conditions and near-stationary entropy are added, accepted for publication in Physical Review

    Quasi-normal modes of charged, dilaton black holes

    Get PDF
    In this paper we study the perturbations of the charged, dilaton black hole, described by the solution of the low energy limit of the superstring action found by Garfinkle, Horowitz and Strominger. We compute the complex frequencies of the quasi-normal modes of this black hole, and compare the results with those obtained for a Reissner-Nordstr\"{o}m and a Schwarzschild black hole. The most remarkable feature which emerges from this study is that the presence of the dilaton breaks the \emph{isospectrality} of axial and polar perturbations, which characterizes both Schwarzschild and Reissner-Nordstr\"{o}m black holes.Comment: 15 pages, 5 figure

    Lagrangian perfect fluids and black hole mechanics

    Get PDF
    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2
    corecore