4,474 research outputs found
Diffusion of a liquid nanoparticle on a disordered substrate
We perform molecular dynamic simulations of liquid nanoparticles deposited on
a disordered substrate. The motion of the nanoparticle is characterised by a
'stick and roll' diffusive process. Long simulation times (),
analysis of mean square displacements and stacking time distribution functions
demonstrate that the nanoparticle undergoes a normal diffusion in spite of long
sticking times. We propose a phenomenological model for the size and
temperature dependence of the diffusion coefficient in which the activation
energy scales as .Comment: Accepted for publication in Phys. Rev.
Isotope Effect in the Superfluid Density of HTS Cuprates: Stripes, Pseudogap and Impurities
Underdoped cuprates exhibit a normal-state pseudogap, and their spins and
doped carriers tend to spatially separate into 1- or 2-D stripes. Some view
these as central to superconductivity, others as peripheral and merely
competing. Using LaSrCuZnO we show that an oxygen
isotope effect in and in the superfluid density can be used to
distinguish between the roles of stripes and pseudogap and also to detect the
presence of impurity scattering. We conclude that stripes and pseudogap are
distinct, and both compete and coexist with superconductivity.Comment: Revised submission to PRL with added appendix on a possible isotope
effect in the effective mass, 4 pages, 3 figure
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
A quantitative analysis of measures of quality in science
Condensing the work of any academic scientist into a one-dimensional measure
of scientific quality is a difficult problem. Here, we employ Bayesian
statistics to analyze several different measures of quality. Specifically, we
determine each measure's ability to discriminate between scientific authors.
Using scaling arguments, we demonstrate that the best of these measures require
approximately 50 papers to draw conclusions regarding long term scientific
performance with usefully small statistical uncertainties. Further, the
approach described here permits the value-free (i.e., statistical) comparison
of scientists working in distinct areas of science.Comment: 11 pages, 8 figures, 4 table
Properties of the phonon-induced pairing interaction in YBaCuO within the local density approximation
The properties of the phonon-induced interaction between electrons are
studied using the local density approximation (LDA). Restricting the electron
momenta to the Fermi surface we find generally that this interaction has a
pronounced peak for large momentum transfers and that the interband
contributions between bonding and antibonding band are of the same magnitude as
the intraband ones. Results are given for various symmetry averages of this
interaction over the Fermi surface. In particular, we find that the
dimensionless coupling constant in the d-wave channel , relevant for
superconductivity, is only 0.022, i.e., even about ten times smaller than the
small value of the s-wave channel. Similarly, the LDA contribution to the
resistivity is about a factor 10 times smaller than the observed resistivity
suggesting that phonons are not the important low-energy excitations in
high-T oxides.Comment: 6 pages, 7 figure
Implications of the isotope effects on the magnetization, magnetic torque and susceptibility
We analyze the magnetization, magnetic torque and susceptibility data of
La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal
3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that
on the anisotropy. Invoking the generic behavior of the anisotropy the doping
dependence of the isotope effects on the critical properties, including Tc,
correlation lengths and magnetic penetration depths are traced back to a change
of the mobile carrier concentration.Comment: 5 pages, 3 figure
Supersymmetric structure of the induced W gravities
We derive the supersymmetric structure present in W-gravities which has been
already observed in various contexts as Yang-Mills theory, topological field
theories, bosonic string and chiral W_{3}-gravity. This derivation which is
made in the geometrical framework of Zucchini, necessitates the introduction of
an appropriate new basis of variables which replace the canonical fields and
their derivatives. This construction is used, in the W_{2}-case, to deduce from
the Chern-Simons action the Wess-Zumino-Polyakov action.Comment: 17 pages, Latex. To appear in Class. Quantum. Gravit
Boron Isotope Effect in Superconducting MgB
We report the preparation method of, and boron isotope effect for MgB, a
new binary intermetallic superconductor with a remarkably high superconducting
transition temperature (B) = 40.2 K. Measurements of both
temperature dependent magnetization and specific heat reveal a 1.0 K shift in
between MgB and MgB. Whereas such a high transition
temperature might imply exotic coupling mechanisms, the boron isotope effect in
MgB is consistent with the material being a phonon-mediated BCS
superconductor.Comment: One figure and related discussion adde
'A Monstrous Failure of Justice'?:Guantanamo Bay and National Security Challenges to Fundamental Human Rights
This article considers challenges to the existing international human rights regime in the post-9/11 era. It uses an interdisciplinary approach that brings together issues of politics and law by focussing on international legal provisions and setting them into the context of International Relations theory. The article examines the establishment of Guantanamo Bay as a detention centre for suspected terrorists captured in the 'war on terror' and focuses on violations of international human rights and humanitarian law in the name of national security. This article demonstrates that the wrangling over Guantanamo Bay is an important illustration of the complex interaction between interests and norms as well as law and politics in US policy making. The starting point is that politics and law are linked and cannot be seen in isolation from each other; the question that then arises is what kind of politics law can maintain. International Politics (2010) 47, 680-697. doi: 10.1057/ip.2010.25</p
Oxygen-isotope effect on the in-plane penetration depth in cuprate superconductors
Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O)
effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in
cuprate high-temperature superconductors (HTS) are presented. First, the doping
dependence of the OIE on the transition temperature T_c in various HTS is
briefly discussed. It is observed that different cuprate families show a
similar doping dependence of the OIE on T_c. Then, bulk muSR, low-energy muSR,
and magnetization studies of the total and site-selective OIE on lambda_{ab}
are described in some detail. A substantial OIE on lambda_{ab} was observed in
various cuprate families at all doping levels, suggesting that cuprate HTS are
non-adiabatic superconductors. The experiments clearly demonstrate that the
total OIE on T_c and lambda_{ab} arise from the oxygen sites within the
superconducting CuO_2 planes, demonstrating that the phonon modes involving the
movement of planar oxygen are dominantly coupled to the supercarriers. Finally,
it is shown that the OIE on T_c and lambda_{ab} exhibit a relation that appears
to be generic for different families of cuprate HTS. The observation of these
unusual isotope effects implies that lattice effects play an essential role in
cuprate HTS and have to be considered in any realistic model of
high-temperature superconductivity.Comment: 22 pages, 12 figures. To be published in a special issue of J. Phys.
Cond. Ma
- …
