2,368 research outputs found
Current noise of a quantum dot p-i-n junction in a photonic crystal
The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a
three-dimensional photonic crystal is investigated. Radiative decay properties
of quantum dot excitons can be obtained from the observation of the current
noise. The characteristic of the photonic band gap is revealed in the current
noise with discontinuous behavior. Applications of such a device in
entanglement generation and emission of single photons are pointed out, and may
be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005
Truncation method for Green's functions in time-dependent fields
We investigate the influence of a time dependent, homogeneous electric field
on scattering properties of non-interacting electrons in an arbitrary static
potential. We develop a method to calculate the (Keldysh) Green's function in
two complementary approaches. Starting from a plane wave basis, a formally
exact solution is given in terms of the inverse of a matrix containing
infinitely many 'photoblocks' which can be evaluated approximately by
truncation. In the exact eigenstate basis of the scattering potential, we
obtain a version of the Floquet state theory in the Green's functions language.
The formalism is checked for cases such as a simple model of a double barrier
in a strong electric field. Furthermore, an exact relation between the
inelastic scattering rate due to the microwave and the AC conductivity of the
system is derived which in particular holds near or at a metal-insulator
transition in disordered systems.Comment: to appear in Phys. Rev. B., 21 pages, 3 figures (ps-files
Shot noise spectrum of superradiant entangled excitons
The shot noise produced by tunneling of electrons and holes into a double dot
system incorporated inside a p-i-n junction is investigated theoretically. The
enhancement of the shot noise is shown to originate from the entangled
electron-hole pair created by superradiance. The analogy to the superconducting
cooper pair box is pointed out. A series of Zeno-like measurements is shown to
destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004
Current-Induced Entanglement of Nuclear Spins in Quantum Dots
We propose an entanglement mechanism of nuclear spins in quantum dots driven
by the electric current accompanied by the spin flip. This situation is
relevant to a leakage current in spin-blocked regions where electrons cannot be
transported unless their spins are flipped. The current gradually increases the
components of larger total spin of nuclei. This correlation among the nuclear
spins markedly enhances the spin-flip rate of electrons and hence the leakage
current. The enhancement of the current is observable when the residence time
of electrons in the quantum dots is shorter than the dephasing time T*_2 of
nuclear spins.Comment: 4 pages, 4 figure
A Method to Find Community Structures Based on Information Centrality
Community structures are an important feature of many social, biological and
technological networks. Here we study a variation on the method for detecting
such communities proposed by Girvan and Newman and based on the idea of using
centrality measures to define the community boundaries (M. Girvan and M. E. J.
Newman, Community structure in social and biological networks Proc. Natl. Acad.
Sci. USA 99, 7821-7826 (2002)). We develop an algorithm of hierarchical
clustering that consists in finding and removing iteratively the edge with the
highest information centrality. We test the algorithm on computer generated and
real-world networks whose community structure is already known or has been
studied by means of other methods. We show that our algorithm, although it runs
to completion in a time O(n^4), is very effective especially when the
communities are very mixed and hardly detectable by the other methods.Comment: 13 pages, 13 figures. Final version accepted for publication in
Physical Review
Dicke Effect in the Tunnel Current through two Double Quantum Dots
We calculate the stationary current through two double quantum dots which are
interacting via a common phonon environment. Numerical and analytical solutions
of a master equation in the stationary limit show that the current can be
increased as well as decreased due to a dissipation mediated interaction. This
effect is closely related to collective, spontaneous emission of phonons (Dicke
super- and subradiance effect), and the generation of a `cross-coherence' with
entanglement of charges in singlet or triplet states between the dots.
Furthermore, we discuss an inelastic `current switch' mechanism by which one
double dot controls the current of the other.Comment: 12 pages, 6 figures, to appear in Phys. Rev.
Load distribution in weighted complex networks
We study the load distribution in weighted networks by measuring the
effective number of optimal paths passing through a given vertex. The optimal
path, along which the total cost is minimum, crucially depend on the cost
distribution function . In the strong disorder limit, where , the load distribution follows a power law both in the
Erd\H{o}s-R\'enyi (ER) random graphs and in the scale-free (SF) networks, and
its characteristics are determined by the structure of the minimum spanning
tree. The distribution of loads at vertices with a given vertex degree also
follows the SF nature similar to the whole load distribution, implying that the
global transport property is not correlated to the local structural
information. Finally, we measure the effect of disorder by the correlation
coefficient between vertex degree and load, finding that it is larger for ER
networks than for SF networks.Comment: 4 pages, 4 figures, final version published in PR
A Sparse Stress Model
Force-directed layout methods constitute the most common approach to draw
general graphs. Among them, stress minimization produces layouts of
comparatively high quality but also imposes comparatively high computational
demands. We propose a speed-up method based on the aggregation of terms in the
objective function. It is akin to aggregate repulsion from far-away nodes
during spring embedding but transfers the idea from the layout space into a
preprocessing phase. An initial experimental study informs a method to select
representatives, and subsequent more extensive experiments indicate that our
method yields better approximations of minimum-stress layouts in less time than
related methods.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
- …