461 research outputs found

    Short term wind speed prediction using Multi Layer Perceptron

    Get PDF
    Among renewable energy sources wind energy is having an increasing influence on the supply of energy power. However wind energy is not a stationary power, depending on the fluctuations of the wind, so that is necessary to cope with these fluctuations that may cause problems the electricity grid stability. The ability to predict short-term wind speed and consequent production patterns becomes critical for the all the operators of wind energy. This paper studies several configurations of Artificial Neural Networks (ANN), a well-known tool able to estimate wind speed starting from measured data. The presented ANNs, t have been tested through data gathered in the area of Trapani (Sicily). Different models have been studied in order to determine the best architecture, minimizing statistical error. Simulation results show that the estimated values of wind speed are in good accord with the values measured by the anemometers

    Toxicity Evaluation of a Novel Magnetic Resonance Imaging Marker CoCl2-N-Acetylcysteine in Rats

    Get PDF
    C4 (cobalt dichloride-N-acetylcysteine [1% CoCl 2 :2% NAC]) is a novel magnetic resonance imaging contrast marker that facilitates visualization of implanted radioactive seeds in cancer brachytherapy. We evaluated the toxicity of C4. Rats were assigned to control (0% CoCl 2 :NAC), low-dose (0.1% CoCl 2 :2% NAC), reference-dose (C4), and high-dose (10% CoCl 2 :2% NAC) groups. Agent was injected into the left quadriceps femoris muscle of the rats. Endpoints were organ and body weights, hematology, and serum chemistry and histopathologic changes of tissues at 48 hours and 28 and 63 days after dosing. Student\u27s t tests were used. No abnormalities in clinical signs, terminal body and organ weights, or hematologic and serum chemistry were noted, and no gross or histopathologic lesions of systemic tissue toxicity were found in any treatment group at any time point studied. At the site of injection, concentration-dependent acute responses were observed in all treatment groups at 48 hours after dosing and were recovered by 28 days. No myofiber degeneration or necrosis was observed at 28 or 63 days in any group. In conclusion, a single intramuscular dose of C4 produced no acute or chronic systemic toxicity or inflammation in rats, suggesting that C4 may be toxicologically safe for clinical use in cancer brachytherapy

    Non-invasive characterization of pleural and pericardial effusions using T1 mapping by magnetic resonance imaging

    Get PDF
    AIMS: Differentiating exudative from transudative effusions is clinically important and is currently performed via biochemical analysis of invasively obtained samples using Light's criteria. Diagnostic performance is however limited. Biochemical composition can be measured with T1 mapping using cardiovascular magnetic resonance (CMR) and hence may offer diagnostic utility for assessment of effusions. METHODS AND RESULTS: A phantom consisting of serially diluted human albumin solutions (25-200 g/L) was constructed and scanned at 1.5 T to derive the relationship between fluid T1 values and fluid albumin concentration. Native T1 values of pleural and pericardial effusions from 86 patients undergoing clinical CMR studies retrospectively analysed at four tertiary centres. Effusions were classified using Light's criteria where biochemical data was available (n = 55) or clinically in decompensated heart failure patients with presumed transudative effusions (n = 31). Fluid T1 and protein values were inversely correlated both in the phantom (r = -0.992) and clinical samples (r = -0.663, P < 0.0001). T1 values were lower in exudative compared to transudative pleural (3252 ± 207 ms vs. 3596 ± 213 ms, P < 0.0001) and pericardial (2749 ± 373 ms vs. 3337 ± 245 ms, P < 0.0001) effusions. The diagnostic accuracy of T1 mapping for detecting transudates was very good for pleural and excellent for pericardial effusions, respectively [area under the curve 0.88, (95% CI 0.764-0.996), P = 0.001, 79% sensitivity, 89% specificity, and 0.93, (95% CI 0.855-1.000), P < 0.0001, 95% sensitivity; 81% specificity]. CONCLUSION: Native T1 values of effusions measured using CMR correlate well with protein concentrations and may be helpful for discriminating between transudates and exudates. This may help focus the requirement for invasive diagnostic sampling, avoiding unnecessary intervention in patients with unequivocal transudative effusions
    • …
    corecore