2,958 research outputs found

    Generalization of the model of Hawking radiation with modified high frequency dispersion relation

    Full text link
    The Hawking radiation is one of the most interesting phenomena predicted by the theory of quantum field in curved space. The origin of Hawking radiation is closely related to the fact that a particle which marginally escapes from collapsing into a black hole is observed at the future infinity with infinitely large redshift. In other words, such a particle had a very high frequency when it was near the event horizon. Motivated by the possibility that the property of Hawking radiation may be altered by some unknowned physics which may exist beyond some critical scale, Unruh proposed a model which has higher order spatial derivative terms. In his model, the effects of unknown physics are modeled so as to be suppressed for the waves with a wavelength much longer than the critical scale, k0−1k_0^{-1}. Surprisingly, it was shown that the thermal spectrum is recovered for such modified models. To introduce such higher order spatial derivative terms, the Lorentz invariance must be violated because one special spatial direction needs to be chosen. In previous works, the rest frame of freely-falling observers was employed as this special reference frame. Here we give an extension by allowing a more general choice of the reference frame. Developing the method taken by Corley, % and especially focusing on subluminal case, we show that the resulting spectrum of created particles again becomes the thermal one at the Hawking temperature even if the choice of the reference frame is generalized. Using the technique of the matched asymptotic expansion, we also show that the correction to the thermal radiation stays of order k0−2k_0^{-2} or smaller when the spectrum of radiated particle around its peak is concerned.Comment: 23 pages, 5 postscript figures, submitted to Physical Review

    A matrix model for a quantum hall droplet with manifest particle-hole symmetry

    Full text link
    We find that a gauged matrix model of rectangular fermionic matrices (a matrix version of the fermion harmonic oscillator) realizes a quantum hall droplet with manifest particle-hole symmetry. The droplet consists of free fermions on the topology of a sphere. It is also possible to deform the Hamiltonian by double trace operators, and we argue that this device can produce two body potentials which might lead the system to realize a fractional quantum hall state on the sphere. We also argue that a single gauged fermionic quantum mechanics of hermitian matrices realizes a droplet with an edge that has c=1/2c=1/2 CFT on it.Comment: 25 pages, uses JHEP format, young.sty (included). v2: Updated references, typos correcte

    Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole

    Get PDF
    An effective black-hole-like horizon occurs, for electromagnetic waves in matter, at a surface of singular electric and magnetic permeabilities. In a physical dispersive medium this horizon disappears for wave numbers with k>kck>k_c. Nevertheless, it is shown that Hawking radiation is still emitted if free field modes with k>kck>k_c are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro

    Black hole radiation with high frequency dispersion

    Get PDF
    We consider one model of a black hole radiation, in which the equation of motion of a matter field is modified to cut off high frequency modes. The spectrum in the model has already been analytically derived in low frequency range, which has resulted in the Planckian distributin of the Hawking temperature. On the other hand, it has been numerically shown that its spectrum deviates from the thermal one in high frequency range. In this paper, we analytically derive the form of the deviation in the high frequency range. Our result can qualitatively explain the nature of the numerically calculated spectrum. The origin of the deviation is clarified by a simple discussion.Comment: 9 pages, 10 figures, submitted to Phys.Rev.

    Euclidean analysis of the entropy functional formalism

    Full text link
    The attractor mechanism implies that the supersymmetric black hole near horizon solution is defined only in terms of the conserved charges and is therefore independent of asymptotic moduli. Starting only with the near horizon geometry, Sen's entropy functional formalism computes the entropy of an extreme black hole by means of a Legendre transformation where the electric fields are defined as conjugated variables to the electric charges. However, traditional Euclidean methods require the knowledge of the full geometry to compute the black hole thermodynamic quantities. We establish the connection between the entropy functional formalism and the standard Euclidean formalism taken at zero temperature. We find that Sen's entropy function 'f' (on-shell) matches the zero temperature limit of the Euclidean action. Moreover, Sen's near horizon angular and electric fields agree with the chemical potentials that are defined from the zero-temperature limit of the Euclidean formalism.Comment: 37 pages. v3: Footnote and Reference added. Published versio
    • 

    corecore