667 research outputs found

    Universality in an integer Quantum Hall transition

    Full text link
    An integer Quantum Hall effect transition is studied in a modulation doped p-SiGe sample. In contrast to most examples of such transitions the longitudinal and Hall conductivities at the critical point are close to 0.5 and 1.5 (e^2/h), the theoretically expected values. This allows the extraction of a scattering parameter, describing both conductivity components, which depends exponentially on filling factor. The strong similarity of this functional form to those observed for transitions into the Hall insulating state and for the B=0 metal- insulator transition implies a universal quantum critical behaviour for the transitions. The observation of this behaviour in the integer Quantum Hall effect, for this particular sample, is attributed to the short-ranged character of the potential associated with the dominant scatterers

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure

    "Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures

    Full text link
    We show that in dilute metallic p-SiGe heterostructures, magnetic field can cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating states are observed between quantum Hall states with filling factors \nu=1 and 2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The latter are in contradiction with the original global phase diagram for the quantum Hall effect. We suggest that the application of a (perpendicular) magnetic field induces insulating behavior in metallic p-SiGe heterostructures in the same way as in Si MOSFETs. This insulator is then in competition with, and interrupted by, integer quantum Hall states leading to the multiple re-entrant transitions. The phase diagram which accounts for these transition is similar to that previously obtained in Si MOSFETs thus confirming its universal character

    Mobility-Dependence of the Critical Density in Two-Dimensional Systems: An Empirical Relation

    Full text link
    For five different electron and hole systems in two dimensions (Si MOSFET's, p-GaAs, p-SiGe, n-GaAs and n-AlAs), the critical density, ncn_c that marks the onset of strong localization is shown to be a single power-law function of the scattering rate 1/τ1/\tau deduced from the maximum mobility. The resulting curve defines the boundary separating a localized phase from a phase that exhibits metallic behavior. The critical density nc0n_c \to 0 in the limit of infinite mobility.Comment: 2 pages, 1 figur

    Coleridge, Sara

    Get PDF
    An encylopaedia article on the life and writings of Sara Coleridge (1802-1852), for an online work of reference and scholarshi

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe

    In-plane Magnetoconductivity of Si-MOSFET's: A Quantitative Comparison between Theory and Experiment

    Full text link
    For densities above n=1.6×1011n=1.6 \times 10^{11} cm2^{-2} in the strongly interacting system of electrons in two-dimensional silicon inversion layers, excellent agreement between experiment and the theory of Zala, Narozhny and Aleiner is obtained for the response of the conductivity to a magnetic field applied parallel to the plane of the electrons. However, the Fermi liquid parameter F0σ(n)F_0^\sigma(n) and the valley splitting ΔV(n)\Delta_V(n) obtained from fits to the magnetoconductivity, although providing qualitatively correct behavior (including sign), do not yield quantitative agreement with the temperature dependence of the conductivity in zero magnetic field. Our results suggest the existence of additional scattering processes not included in the theory in its present form

    Electron spin-orbit splitting in InGaAs/InP quantum well studied by means of the weak antilocalization and spin-zero effects in tilted magnetic fields

    Full text link
    The coupling between Zeeman spin splitting and Rashba spin-orbit terms has been studied experimentally in a gated InGaAs/InP quantum well structure by means of simultaneous measurements of the weak antilocalization (WAL) effect and beating in the SdH oscillations. The strength of the Zeeman splitting was regulated by tilting the magnetic field with the spin-zeros in the SdH oscillations, which are not always present, being enhanced by the tilt. In tilted fields the spin-orbit and Zeeman splittings are not additive, and a simple expression is given for the energy levels. The Rashba parameter and the electron g-factor were extracted from the position of the spin zeros in tilted fields. A good agreement is obtained for the spin-orbit coupling strength from the spin-zeros and weak antilocalization measurements.Comment: Accepted for publication in Semiconductors Science and Technolog

    The Quantum Hall Effect and Inter-edge State Tunneling Within a Barrier

    Full text link
    We have introduced a controllable nano-scale incursion into a potential barrier imposed across a two-dimensional electron gas, and report on the phenomena that we observe as the incursion develops. In the quantum Hall regime, the conductance of this system displays quantized plateaus, broad minima and oscillations. We explain these features and their evolution with electrostatic potential geometry and magnetic field as a progression of current patterns formed by tunneling between edge and localized states within the barrier.Comment: RevTeX + 4 postscript figures. Self-unpacking uuencoded files. Unpacking instructions are at the beginning of the files. To appear in Physical Review
    corecore