2,760 research outputs found

    Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds

    Get PDF
    This review will explore the latest advancements spanning several facets of wound healing, including biologics, skin substitutes, biomembranes and scaffolds

    Robustness Analysis of Video-Language Models Against Visual and Language Perturbations

    Full text link
    Joint visual and language modeling on large-scale datasets has recently shown good progress in multi-modal tasks when compared to single modal learning. However, robustness of these approaches against real-world perturbations has not been studied. In this work, we perform the first extensive robustness study of video-language models against various real-world perturbations. We focus on text-to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and YouCook2-P, which utilize 90 different visual and 35 different text perturbations. The study reveals some interesting initial findings from the studied models: 1) models are generally more susceptible when only video is perturbed as opposed to when only text is perturbed, 2) models that are pre-trained are more robust than those trained from scratch, 3) models attend more to scene and objects rather than motion and action. We hope this study will serve as a benchmark and guide future research in robust video-language learning. The benchmark introduced in this study along with the code and datasets is available at https://bit.ly/3CNOly4.Comment: NeurIPS 2022 Datasets and Benchmarks Track. This projects webpage is located at https://bit.ly/3CNOly

    Random matrix ensemble with random two-body interactions in presence of a mean-field for spin one boson systems

    Full text link
    For mm number of bosons, carrying spin (SS=1) degree of freedom, in Ω\Omega number of single particle orbitals, each triply degenerate, we introduce and analyze embedded Gaussian orthogonal ensemble of random matrices generated by random two-body interactions that are spin (S) scalar [BEGOE(2)-S1S1]. The embedding algebra is U(3)⊃G⊃G1⊗SO(3)U(3) \supset G \supset G1 \otimes SO(3) with SO(3) generating spin SS. A method for constructing the ensembles in fixed-(mm, SS) space has been developed. Numerical calculations show that the form of the fixed-(mm, SS) density of states is close to Gaussian and level fluctuations follow GOE. Propagation formulas for the fixed-(mm, SS) space energy centroids and spectral variances are derived for a general one plus two-body Hamiltonian preserving spin. In addition to these, we also introduce two different pairing symmetry algebras in the space defined by BEGOE(2)-S1S1 and the structure of ground states is studied for each paring symmetry.Comment: 22 pages, 6 figure

    Treatment Guidelines for Rare, Early-Onset Conditions Associated with Epileptic Seizures: A Literature Review on Rett Syndrome and Tuberous Sclerosis Complex

    Get PDF
    Background Rett syndrome (RTT) and tuberous sclerosis complex (TSC) are two rare disorders presenting with a range of different epileptic seizures. Seizure management requires careful therapy selection, thereby necessitating development of high-quality treatment guidelines. This targeted literature review (TLR) aimed to characterise country-specific and international treatment guidelines available for pharmacological management of seizures in RTT and TSC.Methods A TLR was performed between 25-Jan and 11-Mar 2021. Manual searches of online rare disease and guideline databases, and websites of national heath technology assessment bodies were conducted for the following countries: Australia, Canada, France, Germany, Israel, Italy, Japan, Spain, Switzerland, UK, and US as defined by pre-specified eligibility criteria. Search terms were developed for each condition and translated into local languages where appropriate. Eligible publications were defined as guidelines/guidance reporting pharmacological management of seizures in patients with RTT and TSC. Guideline development methodology, geographical focus, author information and treatment recommendations were extracted from guidelines. An author map was generated using R version 3.5.1 to visualise extent of collaboration between authors. Results24 total guidelines were included, of which three and six contained only recommendations for RTT and TSC, respectively (some provided recommendations for ≥1 condition). Guideline development processes were poorly described (50% [12 guidelines] had unclear/absent literature review methodologies); reported methodologies were variable, including systematic literature reviews (SLRs)/TLRs and varying levels of expert consultation. Most (83% [20/24]) were country-specific, with guideline authors predominantly publishing in contained national groups; four guidelines were classified as ‘International,’ linking author groups in the US, UK, Italy and France. High levels of heterogeneity were observed in the availability of treatment recommendations across indications, with 13 and 67 recommendations found for RTT and TSC, respectively. For RTT, all treatment recommendations were positive and sodium valproate had the highest number of positive recommendations (3). All TSC treatments (21 medications) received either exclusively negative (2) or positive (65) recommendations; vigabatrin received the highest number of positive recommendations (21). ConclusionsThis review highlights the need for the development of international high-quality and comprehensive consensus-based guidance for the management of seizures with pharmacological therapy in RTT and TSC. <br/

    Physicality and Cooperative Design

    Get PDF
    CSCW researchers have increasingly come to realize that material work setting and its population of artefacts play a crucial part in coordination of distributed or co-located work. This paper uses the notion of physicality as a basis to understand cooperative work. Using examples from an ongoing fieldwork on cooperative design practices, it provides a conceptual understanding of physicality and shows that material settings and co-worker’s working practices play an important role in understanding physicality of cooperative design

    One plus two-body random matrix ensembles with parity: Density of states and parity ratios

    Full text link
    One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-π\pi] generated by a random two-body interaction (modeled by GOE in two particle spaces) in the presence of a mean-field, for spinless identical fermion systems, is defined, generalizing the two-body ensemble with parity analyzed by Papenbrock and Weidenm\"{u}ller [Phys. Rev. C {\bf 78}, 054305 (2008)], in terms of two mixing parameters and a gap between the positive (π=+)(\pi=+) and negative (π=−)(\pi=-) parity single particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that the EGOE(1+2)-π\pi ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e. state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained, by applying the formulation due to Chang et al [Ann. Phys. (N.Y.) {\bf 66}, 137 (1971)], a simple formula for the spectral variances defined over fixed-(m1,m2)(m_1,m_2) spaces, where m1m_1 is the number of fermions in the +ve parity sp states and m2m_2 is the number of fermions in the -ve parity sp states. Similarly, using the binary correlation approximation, in the dilute limit, we have derived expressions for the lowest two shape parameters. The smoothed densities generated by the sum of fixed-(m1,m2)(m_1,m_2) Gaussians with lowest two shape corrections describe the numerical results in many situations. The model also generates preponderance of +ve parity ground states for small values of the mixing parameters and this is a feature seen in nuclear shell model results.Comment: 38 pages, 11 figures, 3 tables, enlarged and reorganized with additional result

    Two-Level Atom in an Optical Parametric Oscillator: Spectra of Transmitted and Fluorescent Fields in the Weak Driving Field Limit

    Get PDF
    We consider the interaction of a two-level atom inside an optical parametric oscillator. In the weak driving field limit, we essentially have an atom-cavity system driven by the occasional pair of correlated photons, or weakly squeezed light. We find that we may have holes, or dips, in the spectrum of the fluorescent and transmitted light. This occurs even in the strong-coupling limit when we find holes in the vacuum-Rabi doublet. Also, spectra with a sub-natural linewidth may occur. These effects disappear for larger driving fields, unlike the spectral narrowing obtained in resonance fluorescence in a squeezed vacuum; here it is important that the squeezing parameter NN tends to zero so that the system interacts with only one correlated pair of photons at a time. We show that a previous explanation for spectral narrowing and spectral holes for incoherent scattering is not applicable in the present case, and propose a new explanation. We attribute these anomalous effects to quantum interference in the two-photon scattering of the system.Comment: 10 pages, 17 figures, submitted to Phys Rev

    Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis

    Get PDF
    ©2020. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published, version of a Published Work that appeared in final form in Scientific Reports. To access the final edited and published work see https://doi.org/10.1038/s41598-020-69695-
    • …
    corecore