4,466 research outputs found
Electronic Structure of Superconducting Ba6c60
We report the results of first-principles electronic-structure calculations
for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound
shows strong Ba-C hybridization in the valence and conduction regions, mixed
covalent/ionic bonding character, partial charge transfer, and insulating
zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with
REVTE
Important role of alkali atoms in A4C60
We show that hopping via the alkali atoms plays an important role for the t1u
band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is
broadened by more than 40 % by the presence of the alkali atoms. The difference
between A4C60 and A3C60 is in particular due to the less symmetric location of
the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more
information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
Reformulation of the LDA+U method for a local orbital basis
We present a new approach to the evaluation of the on-site repulsion energy U
for use in the LDA+U method of Anisimov and collaborators. Our objectives are
to make the method more firmly based, to concentrate primarily on ground state
properties rather than spectra, and to test the method in cases where only
modest changes in orbital occupations are expected, as well as for highly
correlated materials. Because of these objectives, we employ a differential
definition of U. We also define a matrix U, which we find is very dependent on
the environment of the atom in question. The formulation is applied to evaluate
U for transition metal monoxides from VO to NiO using a local orbital basis
set. The resulting values of U are typically only 40-65% as large as values
currently in use. We evaluate the U matrix for the e_g and t_{2g} subshells in
paramagnetic FeO, and illustrate the very different charge response of the e_g
and t_{2g} states. The sensitivity of the method to the choice of the d
orbitals, and to the basis set in general, is discussed.Comment: 6 figure
Three-dimensional electronic instabilities in polymerized solid A1C60
The low-temperature structure of A1C60 (A=K, Rb) is an ordered array of
polymerized C60 chains, with magnetic properties that suggest a non-metallic
ground state. We study the paramagnetic state of this phase using
first-principles electronic-structure methods, and examine the magnetic
fluctuations around this state using a model Hamiltonian. The electronic and
magnetic properties of even this polymerized phase remain strongly three
dimensional, and the magnetic fluctuations favor an unusual three-dimensional
antiferromagnetically ordered structure with a semi-metallic electronic
spectrum.Comment: REVTeX 3.0, 10 pages, 4 figures available on request from
[email protected]
Symmetries and Triplet Dispersion in a Modified Shastry-Sutherland Model for SrCu_2(BO_3)_2
We investigate the one-triplet dispersion in a modified Shastry-Sutherland
Model for SrCu_2(BO_3)_2 by means of a series expansion about the limit of
strong dimerization. Our perturbative method is based on a continuous unitary
transformation that maps the original Hamiltonian to an effective, energy
quanta conserving block diagonal Hamiltonian H_{eff}. The dispersion splits
into two branches which are nearly degenerated. We analyse the symmetries of
the model and show that space group operations are necessary to explain the
degeneracy of the dispersion at k=0 and at the border of the magnetic Brillouin
zone. Moreover, we investigate the behaviour of the dispersion for small |k|
and compare our results to INS data.Comment: 9 pages, 8 figures accepted by J. Phys.: Condens. Matte
- …