164 research outputs found

    Studies of structural, magnetic, electrical and photoconducting properties of Bi1−x_{1-x}Cax_{x}MnO3_{3} epitaxial thin films

    Get PDF
    The dynamics of the charge ordered (CO) state under non-equilibrium conditions created by strong dc-electric field (~106 V/cm) and photo-illumination with short (~ 6 ns) laser pulses is investigated in Bi1-xCaxMnO3 (x > 0.5) epitaxial films. A pulsed laser deposition method was used to synthesize films on (100) LaAlO3 (LAO) and (100) SrTiO3 (STO) substrates. The crystallographic structure, temperature dependence of electrical resistivity and magnetization of the samples of different composition prepared under different oxygen partial pressure (pO2) and deposition temperature (TD) are studied. For the x = 0.6 sample grown on LAO, a clear signature of charge ordering at ~275 K is seen in the magnetization and at ~ 260 K in the resistivity data. The same sample grown on STO revealed a complex behavior, which entails charge ordering at ~300 K, a Neel order at ~150 K and finally a weak ferromagnetic phase below 50 K. A strong correlation between charge ordering temperature (TCO) and the c-axis lattice parameter (c) of the type (dTCO/dc ~-350 K/A) imerges from measurements on films deposited under different growth conditions. Since the out of plane lattice parameter (c) increases with in plane compressive strain, this effect directly show a compressive strain induced suppression of the TCO. The current (I)- voltage (V) characteristics of the samples at T < TCO show hysteresis due to a compound effect of Joule heating and collapse of the CO state. Transient changes in conductivity of lifetime ranging from nano to microseconds are seen at T < TCO on illumination with pulsed UV (355 nm) radiation. These observations are explained on the basis of the topological and electronic changes in the charge ordered phase.Comment: 19 figures, 34 page

    Complementarity of perturbations driving insulator-to-metal transition in a charge ordered manganite

    Full text link
    Modulation of charge carrier dynamics and hence electrical conductivity of solids by photoexcitation has been a rich field of research with numerous applications. Similarly, electric and magnetic field assisted enhancement of conductivity are of fundamental importance and technological use. Hole doped manganites of the type (A1−x_{1-x}Bx)_{x})MnO3_{3}, where A and B are rare and alkaline earth metals respectively have the distinction of showing all three effects. Here we establish the complementarity of the electric, magnetic and photon fields in driving an insulator-metal transition in epitaxial thin films of La0.175_{0.175}Pr0.45_{0.45}Ca0.375_{0.375}MnO3_{3} whose electrical ground state is insulating. Both pulsed and CW lasers cause a giant photon flux dependent enhancement of conductivity. It is further observed that electric and magnetic fields trigger the persistent enhancement of conductivity whose magnitude can be accentuated by application of these fields in parallel.Comment: 17 pages 6 figure

    Scaled frequency-dependent transport in the mesoscopically phase-separated colossal magnetoresistive manganite La_{0.625-y}Pr_yCa_{0.375}MnO_3

    Get PDF
    We address the issue of massive phase separation (PS) in manganite family of doped Mott insulators through ac conductivity measurements on La0.625−y_{0.625-y}Pry_{y}Ca0.375_{0.375}MnO3_{3} (0.375 ≤\leq y ≤\leq 0.275), and establish applicability of the scaling theory of percolation in the critical regime of the PS. Measurements of dc resistivity, magnetization (M(T)) and electron diffraction show incomplete growth of a ferromagnetic (FM) metallic component on cooling the high temperature charge ordered (CO) phase well below Curie temperature. The impedance ∣\midZ(T,f)∣\mid measured over a frequency (f) range of 10 Hz to 10 MHz in the critical regime follows a universal scaling of the form ≈\approx R(T,0)g(fξ2+θ\xi^{2+\theta}) with θ\theta ≈\approx 0.86 and the normalized correlation length varying from 1 to 4, suggesting anomalous diffusion of holes in percolating FM clusters.Comment: 12 pages and 5 figure

    Robust coupling of superconducting order parameter in a mesoscale NbN-Fe-NbN epitaxial structure

    Get PDF
    We report an unconventional and promising route to self-assemble distributed superconductor-ferromagnet-superconductor (S-F-S) Josephson Junctions on single crystal [100] MgO. These structures consist of [110] epitaxial nano-plaquettes of Fe covered with superconducting NbN films of varying thickness. The S-F-S structures are characterized by strong magnetoresistance (MR) anisotropy for the in-plane and out-of-plane magnetic fields. The stronger in-plane MR suggests decoherence of S-F-S junctions whose critical current follows a (1-T/Tc) and (1-T/Tc)1/2 dependence for T Tc and T<<Tc respectively, in accordance with the theory of supercurrent transport in such junctions.Comment: 9 pages, 4 figure

    Evidence of mobile carriers with Charge Ordering gap in Epitaxial Pr0.625_{0.625}Ca0.375_{0.375}MnO3_{3} Thin Films

    Get PDF
    Epitaxial thin films of charge-ordered Pr0.625_{0.625}Ca0.375_{0.375}MnO3_{3} have been studied using variable temperature Scanning tunneling microscopy and spectroscopy (STM/STS). The as grown films were found to be granular while the annealed films show atomic terraces at all temperatures and are found to be electronically homogeneous in 78-300K temperature range. At high temperatures (T>>TCO≈_{CO}\approx 230 K) the local tunnel spectra of the annealed films show a depression in the density of states (DOS) near Fermi energy implying a pseudogap with a significant DOS at EF_F. The gap feature becomes more robust with cooling with a sharp jump in DOS at EF_F at TCO_{CO} and with a gap value of ∼\sim0.3 eV at 78K. At low temperatures we find a small but finite DOS at EF_F indicative of some delocalized carriers in the CO phase together with an energy gap. This is consistent with bulk transport, which shows weakening of the activation gap with cooling below 200K, and indicates the presence of two types of carriers at low temperatures.Comment: 4 pages, 4 figure

    Gapped tunneling spectra in the normal state of Pr2−x_{2-x}Cex_xCuO4_4

    Full text link
    We present tunneling data in the normal state of the electron doped cuprate superconductor Pr2−x_{2-x}Cex_xCuO4_4 for three different values of the doping xx. The normal state is obtained by applying a magnetic field greater than the upper critical field, Hc2H_{c2} for T<TcT < T_c. We observe an anomalous normal state gap near the Fermi level. From our analysis of the tunneling data we conclude that this is a feature of the normal state density of states. We discuss possible reasons for the formation of this gap and its implications for the nature of the charge carriers in the normal and the superconducting states of cuprate superconductors.Comment: 7 pages ReVTeX, 11 figures files included, submitted to PR

    Multi-band superconductivity and nanoscale inhomogeneity at oxide interfaces

    Get PDF
    The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting "puddles" with randomly distributed critical temperatures, embedded in a non-superconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intra-puddle superconductivity by a multi-band system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intra-puddle critical temperature and superfluid density on the carrier density.Comment: 7 pages with 3 figures + supplemental material (4 pages and 5 figures

    Tunneling Study of the Charge-Ordering Gap on the Surface of La0.350_{0.350}Pr0.275_{0.275}Ca0.375_{0.375}MnO3_3 Thin Films

    Get PDF
    Variable temperature scanning tunneling microscopy/spectroscopy studies on (110) oriented epitaxial thin films of La0.350_{0.350}Pr0.275_{0.275}Ca0.375_{0.375}MnO3_3 are reported in the temperature range of 77 to 340 K. The films, grown on lattice matched NdGaO3_3 substrates, show a hysteretic metal-insulator transition in resistivity at 170 K. The topographic STM images show step-terrace morphology while the conductance images display a nearly homogeneous surface. The normalized conductance spectra at low temperatures (T<<150 K) show an energy gap of 0.5 eV while for T≥\geq180 K a gap of 0.16 eV is found from the activated behavior of the zero bias conductance. The presence of energy gap and the absence of phase separation on the surface over more than 2 μ\mum×\times2 μ\mum area contradicts the metallic behavior seen in resistivity measurements at low temperatures. We discuss the measured energy gap in terms of the stabilization of the insulating CO phase at the film surface.Comment: 5 pages, 5 figures To appear in Phys. Rev.
    • …
    corecore