235 research outputs found

    In vitro evaluation of the therapeutic tail of bevacizumab in the eye

    Get PDF

    Fc-fusion mimetics

    Get PDF
    The Fc-fusion mimetic RpR 2[combining low line] was prepared by disulfide bridging conjugation using PEG in the place of the Fc. RpR 2[combining low line] displayed higher affinity for VEGF than aflibercept. This is caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics

    A simple route to functionalising electrospun polymer scaffolds with surface biomolecules

    Get PDF
    Surface functionalisation of polymeric electrospun scaffolds with therapeutic biomolecules is often explored in regenerative medicine and tissue engineering. However, the bioconjugation method must be carefully selected to prevent partial or full loss of activity of the biomolecule following chemical manipulation. Perfluorophenyl azide bearing a N‐hydroxysuccinimide (PFPA-NHS) active ester group is a versatile tool for UV-initiated covalent coupling of amine-containing molecules to hydrocarbon- based polymers, such as polydioxanone or polycaprolactone (PCL). This study therefore explored the feasibility of PFPA-NHS functionalisation of electrospun PCL scaffolds with model biomolecules. Protein conjugation was extensively explored using fluorescence staining and attachment studies, confirming the retention of amine coupling capability following photografting of PFPA-NHS to the PCL surface. The effect of the washing method used to remove unreacted PFPA was explored in Caco-2 cell viability studies, and it was determined that sonication washing is required to avoid cell death. A model enzyme, catalase, was then successfully attached to the surface of PCL scaffolds for potential applications in oncological photodynamic therapy. Catalase retained its enzymatic activity following attachment to the fibres and the majority of the enzyme (∌60%) remained bound to the fibre after incubation in an aqueous environment for six days. The anticipated prolonged presentation and sustained release of proteins as a result of PFPA-NHS conjugation could be advantageous in progressing protein-based therapies

    Storage stability studies of anti-VEGF FpF antibody mimetics

    Get PDF

    Measuring antibody coatings on gold nanoparticles by optical spectroscopy

    Get PDF
    The adsorption of antibodies onto gold nanoparticles to make gold–antibody conjugates is finding application in multiple areas. Gold–antibody conjugates for use in malaria diagnostics were prepared and a method of characterisation that can be applied to any gold–protein conjugate was developed. When protein adsorbs onto a gold nanoparticle, it changes the local refractive index and so changes the surface plasmon resonance of the gold particle. Changes to the surface plasmon resonance manifest in the absorbance spectrum of the conjugates. This was measured by optical spectroscopy and relatively simple equations to convert spectral shifts to predictions of the protein layer thickness and mass coverage are presented. As with most protein adsorption reported in the literature, the results showed the protein adsorption to depend on antibody concentration, reaching a plateau at around 1 ÎŒg ml−1. The coverage was estimated to be approximately 2–3 mg m−2 and the coating thickness estimates were approximately 10 nm, which is consistent with active antibody. The results suggested more antibody was used in conjugate preparation than was necessary for complete coverage of the gold. This excess antibody could bind to the target antigen to reduce malaria test sensitivity. A key advantage of this characterisation method is that it is sufficiently simple to be used for quality control of conjugate production and the equations presented can be applied to other coatings on gold nanoparticles

    Stable Dried Catalase Particles Prepared by Electrospraying

    Get PDF
    Therapeutic proteins and peptides are clinically important, offering potency while reducing the potential for off-target effects. Research interest in developing therapeutic polypeptides has grown significantly during the last four decades. However, despite the growing research effort, maintaining the stability of polypeptides throughout their life cycle remains a challenge. Electrohydrodynamic (EHD) techniques have been widely explored for encapsulation and delivery of many biopharmaceuticals. In this work, we explored monoaxial electrospraying for encapsulation of bovine liver catalase, investigating the effects of the different components of the electrospraying solution on the integrity and bioactivity of the enzyme. The catalase was successfully encapsulated within polymeric particles made of polyvinylpyrrolidone (PVP), dextran, and polysucrose. The polysorbate 20 content within the electrospraying solution (50 mM citrate buffer, pH 5.4) affected the catalase loading-increasing the polysorbate 20 concentration to 500 Όg/mL resulted in full protein encapsulation but did not prevent loss in activity. The addition of ethanol (20% v/v) to a fully aqueous solution improves the electrospraying process by reducing surface tension, without loss of catalase activity. The polymer type was shown to have the greatest impact on preserving catalase activity within the electrosprayed particles. When PVP was the carrier there was no loss in activity compared with fresh aqueous solutions of catalase. The optimum particles were obtained from a 20% w/v PVP or 30% w/v PVP-trehalose (1:1 w/w) solution. The addition of trehalose confers stability advantages to the catalase particles. When trehalose-PVP particles were stored at 5 °C, enzymatic activity was maintained over 3 months, whereas for the PVP-only analogue a 50% reduction in activity was seen. This demonstrates that processing catalase by monoaxial electrospraying can, under optimised conditions, result in stable polymeric particles with no loss of activity

    Preclinical challenges for developing long acting intravitreal medicines

    Get PDF
    The majority of blinding conditions arise due to chronic pathologies in the retina. During the last two decades, antibody-based medicines administered by intravitreal injection directly into the back of the eye have revolutionised the treatment of chronic retinal diseases characterised by uncontrolled blood vessel growth, e.g. wet age-related macular degeneration (wAMD), diabetic retinopathy (DR) and choroidal neovascularisation. Although intravitreal injections have become a commonly performed ophthalmic procedure that provides a reproducible dose to maximise drug exposure in the back of the eye, there is a need to minimise the frequency and cumulative number of intravitreal injections. Developing longer-acting intraocular therapies is one key strategy that is being pursued. Pharmaceutical preclinical development of intraocular medicines is heavily reliant on the use of animal models to determine ocular tolerability, pharmacokinetics, biodistribution and drug stability. Animal eyes are different from human eyes, such as the anatomy, organisation of vitreous macromolecular structure, aqueous outflow and immune response; all which impacts the ability to translate preclinical data into a clinical product. The development of longer acting protein formulations using animals is also limited because animals reject human proteins. Preclinical strategies also do not account for differences in the vitreous due to ageing and whether a vitrectomy has been performed. Intraocular formulations must reside and clear from the vitreous body, so there is a need for the formulation scientist to have knowledge about vitreous structure and physiology to facilitate preclinical development strategies. Preclinical pharmaceutical development paradigms used to create therapies for other routes of administration (e.g. oral and intravenous) are grounded on the use of preclinical in vitro models. Analogous pharmaceutical strategies with appropriately designed in vitro models that can account for intraocular mass transfer to estimate pharmacokinetic profiles can be used to develop in vitro-in vivo correlations (IVIVCs) to accelerate the preclinical optimisation of long acting intraocular formulations. Data can then inform preclinical in vivo and clinical studies. With the now widespread use of intravitreal injections, it has also important early in preclinical studies to ensure there is a viable regulatory pathway for new therapies. Knowledge of these factors will help in the development of long acting intravitreal medicines, which is rapidly evolving into a distinct pharmaceutical discipline

    Dimensional and Flow Properties of the EX-PRESS Glaucoma Drainage Device

    Get PDF
    • 

    corecore