14 research outputs found

    Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation

    Full text link
    PURPOSE: Bioengineered dermo-epidermal skin analogs containing melanocytes represent a promising approach to cover large skin defects including restoration of the patient's own skin color. So far, little is known about the development of blood and lymphatic vessels in pigmented skin analogs after transplantation. In this experimental study, we analyzed the advancement and differences of host blood and lymphatic vessel ingrowth into light- and dark-pigmented human tissue-engineered skin analogs in a rat model. METHODS: Keratinocytes, melanocytes, and fibroblasts from light- and dark-pigmented skin biopsies were isolated, cultured, and expanded. For each donor, melanocytes and keratinocytes were seeded in ratios of 1:1, 1:5, and 1:10 onto fibroblast-containing collagen gels. The skin analogs were subsequently transplanted onto full-thickness wounds of immuno-incompetent rats and quantitatively analyzed for vascular and lymphatic vessel density after 8 and 15 weeks. RESULTS: The skin analogs revealed a significant difference in vascularization patterns between light- and dark-pigmented constructs after 8 weeks, with a higher amount of blood vessels in light compared to dark skin. In contrast, no obvious difference could be detected within the light- and dark-pigmented group when varying melanocyte/keratinocyte ratios were used. However, after 15 weeks, the aforementioned difference in blood vessel density between light and dark constructs could no longer be detected. Regarding lymphatic vessels, light and dark analogs showed similar vessel density after 8 and 15 weeks, while there were generally less lymphatic than blood vessels. CONCLUSION: These data suggest that, at least during early skin maturation, keratinocytes, melanocytes, and fibroblasts from different skin color types used to construct pigmented dermo-epidermal skin analogs have distinct influences on the host tissue after transplantation. We speculate that different VEGF expression patterns might be involved in this disparate revascularization pattern observed

    A two-component pre-seeded dermal-epidermal scaffold

    Get PDF
    We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children's Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIR Ruth L. Kirschstein National Research Service Award (F32GM096546)

    Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    No full text
    <p>Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model.</p><p>Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thickness skin wounds on the back of immuno-incompetent rats were covered with skin grafts with (1) amniocytes in the dermis, (2) fibroblasts in the dermis, or, (3) acellular dermis. Grafts were excised 7 and 21 days post transplantation. Histology and immunofluorescence were performed to investigate epidermis formation, stratification, and expression of established skin markers.</p><p>The epidermis of skin grafts engineered with amniocytes showed near-normal anatomy, a continuous basal lamina, and a stratum corneum. Expression patterns for keratin 15, keratin 16, and Ki67 were similar to grafts with fibroblasts; keratin 1 expression was not yet fully established in all suprabasal cell layers, expression of keratin 19 was increased and not only restricted to the basal cell layer as seen in grafts with fibroblasts. In grafts with acellular dermis, keratinocytes did not survive.</p><p>Dermo-epidermal skin grafts with amniocytes show near-normal physiological behavior suggesting that amniocytes substitute fibroblast function to support the essential cross-talk between mesenchyme and epithelia needed for epidermal stratification. This novel finding has considerable implications regarding tissue engineering.</p>
    corecore