4,908 research outputs found
Linear semigroups with coarsely dense orbits
Let be a finitely generated abelian semigroup of invertible linear
operators on a finite dimensional real or complex vector space . We show
that every coarsely dense orbit of is actually dense in . More
generally, if the orbit contains a coarsely dense subset of some open cone
in then the closure of the orbit contains the closure of . In the
complex case the orbit is then actually dense in . For the real case we give
precise information about the possible cases for the closure of the orbit.Comment: We added comments and remarks at various places. 14 page
Hodge structures associated to SU(p,1)
Let A be an abelian variety over C such that the semisimple part of the Hodge
group of A is a product of copies of SU(p,1) for some p>1. We show that any
effective Tate twist of a Hodge structure occurring in the cohomology of A is
isomorphic to a Hodge structure in the cohomology of some abelian variety
On certain modules of covariants in exterior algebras
We study the structure of the space of covariants for a
certain class of infinitesimal symmetric spaces
such that the space of invariants is an exterior algebra with
. We prove that they are free modules over
the subalgebra of rank . In addition we
will give an explicit basis of . As particular cases we will recover same
classical results. In fact we will describe the structure of , the space of the equivariant matrix
valued alternating multilinear maps on the space of (skew-symmetric or
symmetric with respect to a specific involution) matrices, where is the
symplectic group or the odd orthogonal group. Furthermore we prove new
polynomial trace identities.Comment: Title changed. Results have been generalised to other infinitesimal
symmetric space
Natural boundary for the susceptibility function of generic piecewise expanding unimodal maps
We consider the susceptibility function Psi(z) of a piecewise expanding
unimodal interval map f with unique acim mu, a perturbation X, and an
observable phi. Combining previous results (deduced from spectral properties of
Ruelle transfer operators) with recent work of Breuer-Simon (based on
techniques from the spectral theory of Jacobi matrices and a classical paper of
Agmon), we show that density of the postcritical orbit (a generic condition)
implies that Psi(z) has a strong natural boundary on the unit circle. The
Breuer-Simon method provides uncountably many candidates for the outer
functions of Psi(z), associated to precritical orbits. If the perturbation X is
horizontal, a generic condition (Birkhoff typicality of the postcritical orbit)
implies that the nontangential limit of the Psi(z) as z tends to 1 exists and
coincides with the derivative of the acim with respect to the map (linear
response formula). Applying the Wiener-Wintner theorem, we study the
singularity type of nontangential limits as z tends to e^{i\omega}. An
additional LIL typicality assumption on the postcritical orbit gives stronger
results.Comment: LaTex, 23 pages, to appear ETD
A Note on the Equality of Algebraic and Geometric D-Brane Charges in WZW Models
The algebraic definition of charges for symmetry-preserving D-branes in
Wess-Zumino-Witten models is shown to coincide with the geometric definition,
for all simple Lie groups. The charge group for such branes is computed from
the ambiguities inherent in the geometric definition.Comment: 12 pages, fixed typos, added references and a couple of remark
Symmetric spaces of higher rank do not admit differentiable compactifications
Any nonpositively curved symmetric space admits a topological
compactification, namely the Hadamard compactification. For rank one spaces,
this topological compactification can be endowed with a differentiable
structure such that the action of the isometry group is differentiable.
Moreover, the restriction of the action on the boundary leads to a flat model
for some geometry (conformal, CR or quaternionic CR depending of the space).
One can ask whether such a differentiable compactification exists for higher
rank spaces, hopefully leading to some knew geometry to explore. In this paper
we answer negatively.Comment: 13 pages, to appear in Mathematische Annale
A lattice in more than two Kac--Moody groups is arithmetic
Let be an irreducible lattice in a product of n infinite irreducible
complete Kac-Moody groups of simply laced type over finite fields. We show that
if n is at least 3, then each Kac-Moody groups is in fact a simple algebraic
group over a local field and is an arithmetic lattice. This relies on
the following alternative which is satisfied by any irreducible lattice
provided n is at least 2: either is an S-arithmetic (hence linear)
group, or it is not residually finite. In that case, it is even virtually
simple when the ground field is large enough.
More general CAT(0) groups are also considered throughout.Comment: Subsection 2.B was modified and an example was added ther
Overlap properties of geometric expanders
The {\em overlap number} of a finite -uniform hypergraph is
defined as the largest constant such that no matter how we map
the vertices of into , there is a point covered by at least a
-fraction of the simplices induced by the images of its hyperedges.
In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph
expansion for higher dimensional simplicial complexes, it was asked whether or
not there exists a sequence of arbitrarily large
-uniform hypergraphs with bounded degree, for which . Using both random methods and explicit constructions, we answer this
question positively by constructing infinite families of -uniform
hypergraphs with bounded degree such that their overlap numbers are bounded
from below by a positive constant . We also show that, for every ,
the best value of the constant that can be achieved by such a
construction is asymptotically equal to the limit of the overlap numbers of the
complete -uniform hypergraphs with vertices, as
. For the proof of the latter statement, we establish the
following geometric partitioning result of independent interest. For any
and any , there exists satisfying the
following condition. For any , for any point and
for any finite Borel measure on with respect to which
every hyperplane has measure , there is a partition into measurable parts of equal measure such that all but
at most an -fraction of the -tuples
have the property that either all simplices with
one vertex in each contain or none of these simplices contain
On the cohomology of some exceptional symmetric spaces
This is a survey on the construction of a canonical or "octonionic K\"ahler"
8-form, representing one of the generators of the cohomology of the four
Cayley-Rosenfeld projective planes. The construction, in terms of the
associated even Clifford structures, draws a parallel with that of the
quaternion K\"ahler 4-form. We point out how these notions allow to describe
the primitive Betti numbers with respect to different even Clifford structures,
on most of the exceptional symmetric spaces of compact type.Comment: 12 pages. Proc. INdAM Workshop "New Perspectives in Differential
Geometry" held in Rome, Nov. 2015, to appear in Springer-INdAM Serie
Phase diagram and critical properties in the Polyakov--Nambu--Jona-Lasinio model
We investigate the phase diagram of the so-called
Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical
potential with three quark flavours. Chiral and deconfinement phase transitions
are discussed, and the relevant order-like parameters are analyzed. The results
are compared with simple thermodynamic expectations and lattice data. A special
attention is payed to the critical end point: as the strength of the
flavour-mixing interaction becomes weaker, the critical end point moves to low
temperatures and can even disappear.Comment: Talk given at the 9th International Conference on Quark Confinement
and the Hadron Spectrum - QCHS IX, Madrid, Spain, 30 August - September 201
- …