353 research outputs found
Holographic Composite Higgs Model Building: Soft Breaking, Maximal Symmetry, and the Higgs Mass
We study the emergence and phenomenological consequences of recently proposednew structures, namely soft breaking of the Higgs shift symmetry and `maximalsymmetry' of the composite sector, in holographic realizations of compositeHiggs models. For the former, we show that soft breaking can also successfullybe implemented in a full 5D warped model, where symmetry-restoring universalboundary conditions for the fermion fields allow to break the problematicconnection between a realistically light Higgs and anomalously light toppartners. For the latter, we demonstrate that the minimal incarnation ofmaximal symmetry in the holographic dual leads to a sharp prediction of GeV for GeV. We find that a viable implementation ispossible with sizable negative gauge brane kinetic terms, allowing for GeV. Overall, both approaches offer promising directions to improvethe naturalness also of holographic realizations of composite Higgs models.<br
Mobile technologies in foreign language learning
Welding with laser beams is an innovative optical technique, which leads to higher penetration depth and a narrower seam compared to conventional welding techniques. Significant criteria of the quality of a junction besides detected faults are the penetration depth and the seam width. Within this article optical sensors for process monitoring as well as a predictive control scheme based on these are presented. In the closed loop control the process' inputs laser power and focal position are optimised by taking the future welding speed into account. For modelling the physical demanding, non-linear process an Artificial Neural Network with external dynamics is applied. First results of the application on a real laser welding system are described
Synthesizing Finite-state Protocols from Scenarios and Requirements
Scenarios, or Message Sequence Charts, offer an intuitive way of describing
the desired behaviors of a distributed protocol. In this paper we propose a new
way of specifying finite-state protocols using scenarios: we show that it is
possible to automatically derive a distributed implementation from a set of
scenarios augmented with a set of safety and liveness requirements, provided
the given scenarios adequately \emph{cover} all the states of the desired
implementation. We first derive incomplete state machines from the given
scenarios, and then synthesis corresponds to completing the transition relation
of individual processes so that the global product meets the specified
requirements. This completion problem, in general, has the same complexity,
PSPACE, as the verification problem, but unlike the verification problem, is
NP-complete for a constant number of processes. We present two algorithms for
solving the completion problem, one based on a heuristic search in the space of
possible completions and one based on OBDD-based symbolic fixpoint computation.
We evaluate the proposed methodology for protocol specification and the
effectiveness of the synthesis algorithms using the classical alternating-bit
protocol.Comment: This is the working draft of a paper currently in submission.
(February 10, 2014
Propositional Dynamic Logic for Message-Passing Systems
We examine a bidirectional propositional dynamic logic (PDL) for finite and
infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of
multi-modal logic we can express properties both in the entire future and in
the past of an event. Path expressions strengthen the classical until operator
of temporal logic. For every formula defining an MSC language, we construct a
communicating finite-state machine (CFM) accepting the same language. The CFM
obtained has size exponential in the size of the formula. This synthesis
problem is solved in full generality, i.e., also for MSCs with unbounded
channels. The model checking problem for CFMs and HMSCs turns out to be in
PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with
intersection, the semantics of a formula cannot be captured by a CFM anymore
Propositional Dynamic Logic with Converse and Repeat for Message-Passing Systems
The model checking problem for propositional dynamic logic (PDL) over message
sequence charts (MSCs) and communicating finite state machines (CFMs) asks,
given a channel bound , a PDL formula and a CFM ,
whether every existentially -bounded MSC accepted by
satisfies . Recently, it was shown that this problem is
PSPACE-complete.
In the present work, we consider CRPDL over MSCs which is PDL equipped with
the operators converse and repeat. The former enables one to walk back and
forth within an MSC using a single path expression whereas the latter allows to
express that a path expression can be repeated infinitely often. To solve the
model checking problem for this logic, we define message sequence chart
automata (MSCAs) which are multi-way alternating parity automata walking on
MSCs. By exploiting a new concept called concatenation states, we are able to
inductively construct, for every CRPDL formula , an MSCA precisely
accepting the set of models of . As a result, we obtain that the model
checking problem for CRPDL and CFMs is still in PSPACE
Explicit connection actions in multiparty session types
This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections
Asynchronous Games over Tree Architectures
We consider the task of controlling in a distributed way a Zielonka
asynchronous automaton. Every process of a controller has access to its causal
past to determine the next set of actions it proposes to play. An action can be
played only if every process controlling this action proposes to play it. We
consider reachability objectives: every process should reach its set of final
states. We show that this control problem is decidable for tree architectures,
where every process can communicate with its parent, its children, and with the
environment. The complexity of our algorithm is l-fold exponential with l being
the height of the tree representing the architecture. We show that this is
unavoidable by showing that even for three processes the problem is
EXPTIME-complete, and that it is non-elementary in general
Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry
We review the structure of local Lagrangians and field equations for free
bosonic and fermionic gauge fields of mixed symmetry in flat space. These are
first presented in a constrained setting extending the metric formulation of
linearized gravity, and then the (-)trace constraints on fields and
gauge parameters are eliminated via the introduction of auxiliary fields. We
also display the emergence of Weyl-like symmetries in particular classes of
models in low space-time dimensions.Comment: 136 pages, LaTeX. References added. Final version to appear in La
Rivista del Nuovo Cimento
White Blood, Black Gold: The Commodification of Wild Rubber in the Bolivian Amazon, 1870-1920
The Bolivian rubber boom thrived during the 1880 and 1920 decades throughout the Amazonian fluvial network (Madre de Dios, Beni, Purús, Madeira and Beni rivers). The economic potential of rubber quickly became a decisive phenomenon in the social history of Eastern Bolivia, linked with the definitive ocupation of marginal territories, new interethnic relations, national and international migration, taxation, property entitlement, the foundation of cities, the rise of nationalism, the struggle to settle republican frontiers and a novel regional opening to global economy. The boom also encouraged substantial developments in cartography, hidrography, botanics and ethnology. Our goal is to describe the singularities of the rubber-tapping industry in Bolivia and to analyse the representations of “nature” held by rubber tappers of the period: there was indeed a modernist discourse based on the usual ideas of "progress" and "civilization" of the industry opposed to the "wildness", "savagery" and "barbarism" massively attributed to Amazonia, and also a generalized notion of the jungle as a "desert land" open to opportunities for the self-made man. In retrospect, these discourses can certainly reveal a lack of “ecological awareness”. However, a closer analysis of historical sources also shows the existence of voices that were more nuanced and reflexive, and in some cases even dared to point out the limits of extractivism –not only in "ecological" terms but also in reference to the life of the indigenous and creole populations involved in the rubber boom
- …