28,289 research outputs found

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (kmk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit mm \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Response of the Strongly-Driven Jaynes-Cummings Oscillator

    Get PDF
    We analyze the Jaynes-Cummings model of quantum optics, in the strong-dispersive regime. In the bad cavity limit and on timescales short compared to the atomic coherence time, the dynamics are those of a nonlinear oscillator. A steady-state non-perturbative semiclassical analysis exhibits a finite region of bistability delimited by a pair of critical points, unlike the usual dispersive bistability from a Kerr nonlinearity. This analysis explains our quantum trajectory simulations that show qualitative agreement with recent experiments from the field of circuit quantum electrodynamics.Comment: 5 pages, 3 figure

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure
    corecore