19 research outputs found

    Use of partial duration series for single-station and regional analysis of floods

    Full text link

    Évaluation des méthodes utilisées pour l'estimation de la crue maximale probable en régions nordiques

    Full text link
    Among all existing methods for estimating extreme floods, the probable maximum flood method is the safest, since it is a flood with a probability of excedance that is theoretically zero. In the early 1970s, this flood was calculated as the combination of the probable maximum precipitation (PMP) and the probable maximum snow accumulation (PMSA). In the 1990s, this combination has been considered to be highly improbable. Experts advise against combining two maximized events and, instead, recommend combining one maximized event with a relatively typical extreme event. This article presents a sensitivity analysis on the return period to be used for the typical extreme event to be combined with the maximized event to obtain a "more realistic" PMF. To achieve this, all the steps of a PMF study were reviewed and applied to the Sainte-Marguerite watershed, i.e., calibration and (or) validation of SSARR model, estimation of the PMP, the PMSA, and the temperature sequence. Different flood scenarios have been simulated including accumulated snowfall corresponding to return periods of 50, 100, and 500 years, followed by PMP and PMSA, followed by precipitation corresponding to return periods of 50, 100, and 500 years. It has been noticed that the use of a return period of 50, 100, or 500 years, to represent the unmaximized extreme event, has little effect on the hydrologic response of the basin. Based on the results of this work the use of a return period of 100 years is recommended.Key words: probable maximum flood, probable maximum precipitation, probable maximum snow accumulation, design flood, SSARR model. </jats:p

    Performance of Neural Networks in Daily Streamflow Forecasting

    Full text link
    corecore