1,998 research outputs found
Health Information Services Available for People Living With HIV/AIDS: Perspectives of Library and Information Professionals
There is an urgent need for availability of life-saving health information services as well as adequate marketing, advertising, and dissemination strategies to people living with HIV/AIDS (PLWHAs), and to the broader public at large, especially in the context of a recent UNAIDS estimation that the number of people living with HIV in the United States, at the end of 2003, exceeded one million for the first time. This study explores the HIV/AIDS health information services that are available within the local community of Knoxville, Tennessee, and presents focus group perspectives of nine library and information professionals about awareness and use of these services by PLWHAs. The study forms part of a larger plan to apply a community informatics (CI) approach to examine the provision of health information services for PLWHAs in terms of how PLWHAs and other stakeholders including health care service providers, academic community at the University of Tennessee, community leaders and activists, and faith-based organizations, use and apply information and communication technologies (ICTs) to empower and enable PLWHAs to meet their information needs, goals, and aspirations. Here we report findings from the project’s first phase of documenting perspectives of library and information professionals about existing HIV/AIDS information services, users of these services, barriers and challenges to effective use, and the role of health information professionals in the context of developing ideal information support services for PLWHAs
An Analysis of Scale Invariance in Object Detection - SNIP
An analysis of different techniques for recognizing and detecting objects
under extreme scale variation is presented. Scale specific and scale invariant
design of detectors are compared by training them with different configurations
of input data. By evaluating the performance of different network architectures
for classifying small objects on ImageNet, we show that CNNs are not robust to
changes in scale. Based on this analysis, we propose to train and test
detectors on the same scales of an image-pyramid. Since small and large objects
are difficult to recognize at smaller and larger scales respectively, we
present a novel training scheme called Scale Normalization for Image Pyramids
(SNIP) which selectively back-propagates the gradients of object instances of
different sizes as a function of the image scale. On the COCO dataset, our
single model performance is 45.7% and an ensemble of 3 networks obtains an mAP
of 48.3%. We use off-the-shelf ImageNet-1000 pre-trained models and only train
with bounding box supervision. Our submission won the Best Student Entry in the
COCO 2017 challenge. Code will be made available at
\url{http://bit.ly/2yXVg4c}.Comment: CVPR 2018, camera ready versio
Fast-AT: Fast Automatic Thumbnail Generation using Deep Neural Networks
Fast-AT is an automatic thumbnail generation system based on deep neural
networks. It is a fully-convolutional deep neural network, which learns
specific filters for thumbnails of different sizes and aspect ratios. During
inference, the appropriate filter is selected depending on the dimensions of
the target thumbnail. Unlike most previous work, Fast-AT does not utilize
saliency but addresses the problem directly. In addition, it eliminates the
need to conduct region search on the saliency map. The model generalizes to
thumbnails of different sizes including those with extreme aspect ratios and
can generate thumbnails in real time. A data set of more than 70,000 thumbnail
annotations was collected to train Fast-AT. We show competitive results in
comparison to existing techniques
Deception Detection in Videos
We present a system for covert automated deception detection in real-life
courtroom trial videos. We study the importance of different modalities like
vision, audio and text for this task. On the vision side, our system uses
classifiers trained on low level video features which predict human
micro-expressions. We show that predictions of high-level micro-expressions can
be used as features for deception prediction. Surprisingly, IDT (Improved Dense
Trajectory) features which have been widely used for action recognition, are
also very good at predicting deception in videos. We fuse the score of
classifiers trained on IDT features and high-level micro-expressions to improve
performance. MFCC (Mel-frequency Cepstral Coefficients) features from the audio
domain also provide a significant boost in performance, while information from
transcripts is not very beneficial for our system. Using various classifiers,
our automated system obtains an AUC of 0.877 (10-fold cross-validation) when
evaluated on subjects which were not part of the training set. Even though
state-of-the-art methods use human annotations of micro-expressions for
deception detection, our fully automated approach outperforms them by 5%. When
combined with human annotations of micro-expressions, our AUC improves to
0.922. We also present results of a user-study to analyze how well do average
humans perform on this task, what modalities they use for deception detection
and how they perform if only one modality is accessible. Our project page can
be found at \url{https://doubaibai.github.io/DARE/}.Comment: AAAI 2018, project page: https://doubaibai.github.io/DARE
A systematic review of HIV/AIDS-related stigma and discrimination in India: Current understanding and future needs
HIV/AIDS-related stigma is recognised as a major barrier to HIV prevention efforts and an impediment to mitigating its impact on individuals and communities. This paper reviews the existing research literature on AIDS stigma in India with the objective of documenting the current status of research, highlighting major findings and identifying key gaps remaining. Thirty publications were identified through a careful search of which a majority focused on stigma assessment and very few on stigma measurement, conceptual aspects of stigma or stigma reduction interventions. A few standardised stigma measures are available but more are required to assess causes of stigma among general population and compounded and internalised stigma among positive people. Research exploring linkages between stigma and HIV services uptake or the effect of HIV care and treatment programs on stigma levels are largely missing and need to be prioritised. In addition, more research is needed to advance conceptual understanding of stigma within the cultural context of the country including research on the neglected groups such as,  transgender people. Context-specific (health care, community)  interventions are needed to address various forms of stigma – enacted, perceived, internalised and layered – including structural approaches besides inter-personal and information-based approaches. A major gap relates to meager research on developing and evaluating stigma reduction interventions and needs priority focus. Overall, the review recommends developing a national agenda on AIDS stigma research and interventions to help realise the government’s goal of stigma reduction
- …