21 research outputs found

    Dsg2 Upregulation as a Rescue Mechanism in Pemphigus

    Get PDF
    In pemphigus vulgaris (PV), autoantibodies directed against the desmosomal cadherin desmoglein (Dsg) 3 cause loss of intercellular adhesion. It is known that Dsg3 interactions are directly inhibited by autoantibody binding and that Dsg2 is upregulated in epidermis of PV patients. Here, we investigated whether heterophilic Dsg2-Dsg3 interactions occur and would modulate PV pathogenesis. Dsg2 was upregulated in PV patients’ biopsies and in a human ex vivo pemphigus skin model. Immunoprecipitation and cell-free atomic force microscopy (AFM) experiments demonstrated heterophilic Dsg2-Dsg3 interactions. Similarly, in Dsg3-deficient keratinocytes with severely disturbed intercellular adhesion Dsg2 was upregulated in the desmosome containing fraction. AFM revealed that Dsg2-Dsg3 heterophilic interactions showed binding frequency, strength, Ca2+-dependency and catch-bond behavior comparable to homophilic Dsg3-Dsg3 or homophilic Dsg2-Dsg2 interactions. However, heterophilic Dsg2-Dsg3 interactions had a longer lifetime compared to homophilic Dsg2-Dsg2 interactions and PV autoantibody-induced direct inhibition was significantly less pronounced for heterophilic Dsg2-Dsg3 interactions compared to homophilic Dsg3 interactions. In contrast, a monoclonal anti-Dsg2 inhibitory antibody reduced heterophilic Dsg2-Dsg3 and homophilic Dsg2-Dsg2 binding to the same degree and further impaired intercellular adhesion in Dsg3-deficient keratinocytes. Taken together, the data demonstrate that Dsg2 undergoes heterophilic interactions with Dsg3, which may attenuate autoantibody-induced loss of keratinocyte adhesion in pemphigus

    Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Get PDF
    Capability to characterize lignin, lignocellulose, and their degradation products is essential for development of new renewable feedstocks. Electrospray ionization high-resolution time-offlight mass spectrometry (ESI HR TOF MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di- and triarene lignin model compounds as well as intact lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol·L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9,000 Da or higher, depending on the mass analyzer. The obtained Mn and Mw values of 1,500 and 2,500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrixassisted laser desorption/ionization (MALDI) TOF MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ESI ion mobility HR Q-TOF MS

    Apremilast prevents blistering in human epidermis and stabilizes keratinocyte adhesion in pemphigus

    No full text
    Pemphigus vulgaris is a life-threatening blistering skin disease caused by autoantibodies which destabilize cell adhesion of keratinocytes. The phosphodiesterase 4 inhibitor apremilast prevents skin blistering by stabilizing the keratin filament anchorage of desmosomes
    corecore