145 research outputs found
The coupling of stimulated Raman and Brillouin scattering in a plasma
The observation of an anti-Stokes satellite in the spectrum of light backscattered from a CO2 laser plasma is reported. Its origin is found to be Thomson scattering of the incident light from a counterpropagating mode-coupled plasma wave. The parent electron and ion waves in the mode-coupling process were driven by stimulated Raman and Brillouin backscattering. The parent and daughter plasma waves were detected by ruby laser Thomson scattering. A computer simulation modeling the experiment shows further cascading of the Stokes backscattered light to lower frequencies, apparently a result of its rescattering from another, higher phase velocity, counterpropagating coupled mode. Comparisons with theoretical predictions are presented
Recommended from our members
Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor
Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions
Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas
Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario
Recommended from our members
Physics of high performance deuterium-tritium plasmas in TFTR
During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed
Recommended from our members
Stimulated Raman scatter from laser-produced plasmas: Merely nonlinear or also chaotic
Stimulated Raman scattering in plasmas is a three-wave instability with important practical consequences for laser fusion. Most studies of this process to date have focused on its threshold. Even the linear-theory threshold poses interesting problems; and observed thresholds have been difficult to interpret. However, with increasing evidence that this instability often becomes absolute, it has become appropriate to examine saturation mechanisms as well. A number of such mechanisms are discussed here, one of which has been reported to have a chaotic regime. 26 refs., 4 figs
Recommended from our members
The role of the neutral beam fueling profile in the performance of the Tokamak Fusion Test Reactor and other tokamak plasmas
Scalings for the stored energy and neutron yield, determined from experimental data are applied to both deuterium-only and deuterium-tritium plasmas in different neutral beam heated operational domains in Tokamak Fusion Test Reactor. The domain of the data considered includes the Supershot, High poloidal beta, Low-mode, and limiter High-mode operational regimes, as well as discharges with a reversed magnetic shear configuration. The new important parameter in the present scaling is the peakedness of the heating beam fueling profile shape. Ion energy confinement and neutron production are relatively insensitive to other plasma parameters compared to the beam fueling peakedness parameter and the heating beam power when considering plasmas that are stable to magnetohydrodynamic modes. However, the stored energy of the electrons is independent of the beam fueling peakedness. The implication of the scalings based on this parameter is related to theoretical transport models such as radial electric field shear and Ion Temperature Gradient marginality models. Similar physics interpretation is provided for beam heated discharges on other major tokamaks
Recommended from our members
TAE modes and MHD activity in TFTR DT plasmas
The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas
Recommended from our members
Search for alpha-driven BAE modes in TFTR
A search for alpha-driven beta-induced Alfven eigenmodes (BAE modes) was conducted in low current (1.0--1.6 MA) TFTR supershots. Stable high-beta deuterium-tritium (DT) discharges were obtained with B{rho} = 2.4 and central alpha beta of 0.1%. Instabilities between 75--200 kHz were observed by magnetic probes in many DT discharges, but the activity was also present in deuterium-deuterium (DD) comparison discharges, indicating that these modes are not destabilized (principally) by the alpha-particle population. Losses of fusion products are also similar in the two sets of discharges
Recommended from our members
High performance deuterium-tritium plasmas in TFTR
Plasmas composed of nominally equal concentrations of deuterium and tritium (DT) have been created in TFTR with the goals of producing significant levels of fusion power and of examining the effects of DT fusion alpha particles. Conditioning of the limiter by the injection of lithium pellets has led to an approximate doubling of the energy confinement time, {tau}{sub E}, in supershot plasmas at high plasma current (I{sub p} {le} 2.5 MA) and high heating power (P{sub b} {le} 33 MW). Operation with DT typically results in an additional 20% increase in {tau}{sub E}. In the high poloidal beta, advanced tokamak regime in TFTR, confinement enhancement H {triple_bond} {tau}{sub E}/{tau}{sub E ITER-89P} > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I{sub p} = 0.85 {minus} 1.5 MA. By peaking the plasma current profile, {beta}{sub N dia} {triple_bond} 10{sup 8} aB{sub 0}/I{sub p} = 3 has been obtained in these plasmas, exceeding the {beta}{sub N} limit for TFTR plasmas with lower internal inductance, l{sub i}. Confinement of alpha particles appears to be classical and losses due to collective effects have not been observed. While small fluctuations in fusion product loss were observed during ELMs, no large loss was detected in DT plasmas
Recommended from our members
The Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the Tftr Tokamak
The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement
- …