264 research outputs found

    Taking Development Seriously: Critique of the 2008 \u3ci\u3eJME\u3c/i\u3e Special Issue on Moral Functioning

    Get PDF
    This essay comments on articles that composed a Journal of Moral Education Special Issue (September, 2008, 37[3]). The issue was intended to honor the 50th anniversary of Lawrence Kohlberg’s doctoral dissertation and his subsequent impact on the field of moral development and education. The articles were characterized by the issue editor (Don Collins Reed) as providing a “look forward” from Kohlberg’s work toward a more comprehensive or integrated model of moral functioning. Prominent were culturally pluralist and biologically based themes, such as cultural learning; expert skill; culturally shaped and neurobiologically based predispositions or intuitions; and moral self-relevance or centrality. Inadequately represented, however, was Kohlberg’s (and Piaget’s) key concept of development as the construction of a deeper or more adequate understanding not reducible to particular socialization practices or cultural contexts. Also neglected were related cognitive-developmental themes, along with supportive evidence. Robert Coles’s account of a sudden rescue is used as a heuristic to depict Piaget’s/Kohlberg’s approach to the development of moral functioning. We conclude that, insofar as the Special Issue does not take development seriously, it moves us not forward but, instead, back to the problems of moral relativism and moral paralysis that Kohlberg sought to redress from the start of his work more than 50 years ago

    Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State)

    Get PDF
    The Early Eocene Okanagan High lands series of lacustrine shale and coal deposits, in far western North Ameri ca, constitutes a significant group of fossil sites with exceptional preserva tion of a diverse suite of organisms (Lagerstätten). With contemporaneous basins arrayed across about 1000 kilo metres of southern British Columbia and northern Washington, these sites offer a unique opportunity to examine the paleoecology of terrestrial commu nities spanning a temperate, low-sea sonality landscape in a montane setting during a time of generally warm tem peratures across the globe. The Okana gan Highlands sites provide an unpar alleled comparative framework within which to examine this major turning point in terrestrial community develop ment during the emergence of their broad modern character.La série de dépôts lacustres de schiste et de charbon du début de l’Éocène des hautes terres d’Okanagan, aux con fins de l’ouest de l’Amérique du Nord, constituent un groupe important de sites fossiles particulièrement bien con servés de suites d’organismes diverses (Lagerstätten). De nos jours, ces sites forment en une bande d’environ 1 000 kilomètres, depuis le sud de la Colom bie-Britannique jusqu’au nord de l’État de Washington. Dans le contexte de réchauffement climatique, c’est l’occa sion ou jamais d’étudier la paléoécolo gie de communautés terrestres dans des conditions climatiques modérées dans un paysage de montagne à faible saisonnalité. Les sites des hautes terres d’Okanagan représentent un cadre de comparaison sans pareil permettant d’étudier les effets de ce tournant majeur sur le développement des prin cipales caractéristiques modernes de la communauté terrestre

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    The Jellyfish Cassiopea Exhibits a Sleep-like State

    Get PDF
    Do all animals sleep? Sleep has been observed in many vertebrates, and there is a growing body of evidence for sleep-like states in arthropods and nematodes. Here we show that sleep is also present in Cnidaria, an earlier-branching metazoan lineage. Cnidaria and Ctenophora are the first metazoan phyla to evolve tissue-level organization and differentiated cell types, such as neurons and muscle. In Cnidaria, neurons are organized into a non-centralized radially symmetric nerve net that nevertheless shares fundamental properties with the vertebrate nervous system: action potentials, synaptic transmission, neuropeptides, and neurotransmitters . It was reported that cnidarian soft corals and box jellyfish exhibit periods of quiescence, a pre-requisite for sleep-like states, prompting us to ask whether sleep is present in Cnidaria. Within Cnidaria, the upside-down jellyfish Cassiopea spp. displays a quantifiable pulsing behavior, allowing us to perform long-term behavioral tracking. Monitoring of Cassiopea pulsing activity for consecutive days and nights revealed behavioral quiescence at night that is rapidly reversible, as well as a delayed response to stimulation in the quiescent state. When deprived of nighttime quiescence, Cassiopea exhibited decreased activity and reduced responsiveness to a sensory stimulus during the subsequent day, consistent with homeostatic regulation of the quiescent state. Together, these results indicate that Cassiopea has a sleep-like state, supporting the hypothesis that sleep arose early in the metazoan lineage, prior to the emergence of a centralized nervous system

    The Jellyfish Cassiopea Exhibits a Sleep-like State

    Get PDF
    Do all animals sleep? Sleep has been observed in many vertebrates, and there is a growing body of evidence for sleep-like states in arthropods and nematodes. Here we show that sleep is also present in Cnidaria, an earlier-branching metazoan lineage. Cnidaria and Ctenophora are the first metazoan phyla to evolve tissue-level organization and differentiated cell types, such as neurons and muscle. In Cnidaria, neurons are organized into a non-centralized radially symmetric nerve net that nevertheless shares fundamental properties with the vertebrate nervous system: action potentials, synaptic transmission, neuropeptides, and neurotransmitters . It was reported that cnidarian soft corals and box jellyfish exhibit periods of quiescence, a pre-requisite for sleep-like states, prompting us to ask whether sleep is present in Cnidaria. Within Cnidaria, the upside-down jellyfish Cassiopea spp. displays a quantifiable pulsing behavior, allowing us to perform long-term behavioral tracking. Monitoring of Cassiopea pulsing activity for consecutive days and nights revealed behavioral quiescence at night that is rapidly reversible, as well as a delayed response to stimulation in the quiescent state. When deprived of nighttime quiescence, Cassiopea exhibited decreased activity and reduced responsiveness to a sensory stimulus during the subsequent day, consistent with homeostatic regulation of the quiescent state. Together, these results indicate that Cassiopea has a sleep-like state, supporting the hypothesis that sleep arose early in the metazoan lineage, prior to the emergence of a centralized nervous system
    • …
    corecore