204 research outputs found

    Delocalization in random polymer models

    Full text link
    A random polymer model is a one-dimensional Jacobi matrix randomly composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. It is proven that the Lyapunov exponent vanishes quadratically at a generic critical energy and that the density of states is positive there. Large deviation estimates around these asymptotics allow to prove optimal lower bounds on quantum transport, showing that it is almost surely overdiffusive even though the models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers. Furthermore, the level spacing is shown to be regular at the critical energy

    Transport in the random Kronig-Penney model

    Full text link
    The Kronig-Penney model with random Dirac potentials on the lattice \ZM has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point

    Low density expansion for Lyapunov exponents

    Full text link
    In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory

    Spectral averaging techniques for Jacobi matrices

    Full text link
    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations

    Random Dirac operators with time-reversal symmetry

    Get PDF
    Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivarch-Raugi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO(2L)^*(2L), and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.Comment: parts of introduction made more precise, corrections as follow-up on referee report

    Scattering theory for lattice operators in dimension d3d\geq 3

    Full text link
    This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d3d\geq 3 the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in presence of embedded eigenvalues and threshold singularities.Comment: Minor errors and misprints corrected; new result on absense of embedded eigenvalues for potential scattering; to appear in RM

    Simultaneous quantization of edge and bulk Hall conductivity

    Full text link
    The edge Hall conductivity is shown to be an integer multiple of e2/he^2/h which is almost surely independent of the choice of the disordered configuration. Its equality to the bulk Hall conductivity given by the Kubo-Chern formula follows from K-theoretic arguments. This leads to quantization of the Hall conductance for any redistribution of the current in the sample. It is argued that in experiments at most a few percent of the total current can be carried by edge states.Comment: 6 pages Latex, 1 figur

    On the AC spectrum of one-dimensional random Schroedinger operators with matrix-valued potentials

    Full text link
    We consider discrete one-dimensional random Schroedinger operators with decaying matrix-valued, independent potentials. We show that if the l^2-norm of this potential has finite expectation value with respect to the product measure then almost surely the Schroedinger operator has an interval of purely absolutely continuous (ac) spectrum. We apply this result to Schroedinger operators on a strip. This work provides a new proof and generalizes a result obtained by Delyon, Simon, and Souillard.Comment: (1 figure

    Upper bounds on wavepacket spreading for random Jacobi matrices

    Full text link
    A method is presented for proving upper bounds on the moments of the position operator when the dynamics of quantum wavepackets is governed by a random (possibly correlated) Jacobi matrix. As an application, one obtains sharp upper bounds on the diffusion exponents for random polymer models, coinciding with the lower bounds obtained in a prior work. The second application is an elementary argument (not using multiscale analysis or the Aizenman-Molchanov method) showing that under the condition of uniformly positive Lyapunov exponents, the moments of the position operator grow at most logarithmically in time.Comment: final version, to appear in CM

    The scaling limit of the critical one-dimensional random Schrodinger operator

    Full text link
    We consider two models of one-dimensional discrete random Schrodinger operators (H_n \psi)_l ={\psi}_{l-1}+{\psi}_{l +1}+v_l {\psi}_l, {\psi}_0={\psi}_{n+1}=0 in the cases v_k=\sigma {\omega}_k/\sqrt{n} and v_k=\sigma {\omega}_k/ \sqrt{k}. Here {\omega}_k are independent random variables with mean 0 and variance 1. We show that the eigenvectors are delocalized and the transfer matrix evolution has a scaling limit given by a stochastic differential equation. In both cases, eigenvalues near a fixed bulk energy E have a point process limit. We give bounds on the eigenvalue repulsion, large gap probability, identify the limiting intensity and provide a central limit theorem. In the second model, the limiting processes are the same as the point processes obtained as the bulk scaling limits of the beta-ensembles of random matrix theory. In the first model, the eigenvalue repulsion is much stronger.Comment: 36 pages, 2 figure
    corecore