71 research outputs found

    Genetic correlations between temperature-induced plasticity of life-history traits in a soil arthropod.

    Get PDF
    Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions. © 2010 Springer Science+Business Media B.V

    Genetic variation in heat resistance and HSP70 expression in inbred isofemale lines of the springtail Orchesella cincta.

    Get PDF
    The functional relationship between thermotolerance and heat shock protein (HSP) expression is well described. However, the intraspecific variation in HSP70 expression and heat resistance is not fully understood. Some studies have shown a correlation between thermotolerance and HSP70 expression levels at the intraspecific level, whereas others have not, and results depend on species, developmental stage and environment. The present study extends such correlative studies to species from soil ecosystems, where we have characterized the variation in thermotolerance and HSP70 expression in 18 inbred isofemale lines of the springtail Orchesella cincta. The results show ample genetic variation among lines in heat shock resistance as well as in HSP70 protein levels and hsp70 mRNA expression. However, we did not detect any significant positive correlations between HSP70 expression and thermotolerance. These results indicate that the variation in HSP70 expression and heat resistance at the intraspecific level is dependent on species and/or ecosystem and further studies are needed to clarify this relationship. © Inter-Research 2010

    Dynamics of heat-induced thermal stress resistance and Hsp70 expression in the springtail, Orchesella cincta.

    No full text
    The relationship between thermal resistance and expression of inducible heat shock proteins, especially Hsp70, depends on the species and temperature treatments. The induction of Hsp70 has been shown to be essential for heat stress survival in a number of species, yet the maximum protein expression levels do not coincide with peak survival after heat hardening in Drosophila. 2. Here we study the functional relationship between heat-induced expression of the heat shock protein Hsp70, and thermal resistance in adult Orchesella cincta by comparing thermal resistance (survival of 37·4 °C for 60 min) with Hsp70 gene and protein expression levels, all three measured at time points 2, 4, 6, 23, 27, 49 h after a heat hardening treatment (35·4 °C for 60 min). 3. Thermotolerance increased over time after heat hardening until 49 h after exposure when the experiment ended. On the other hand the expression of hsp70 messenger RNA reached a peak within the first 2 h and then sharply decreased after 6 h. Within 23 h hsp70 expression was back to control levels. 4. Surprisingly, protein levels of Hsp70 followed thermotolerance and reached the highest levels 49 h after heat hardening. A significant positive association was found between thermotolerance and Hsp70 protein levels, but not with hsp70 mRNA levels. 5. Our results support a strong correlation between Hsp70 expression levels and thermal resistance following a heat hardening treatment. They also show that gene and protein expression follow different dynamics, a difference that may be important for our understanding of the role of candidate genes in functional studies. © 2009 British Ecological Society

    Temperature and Population Density Effects on Locomotor Activity of Musca domestica (Diptera: Muscidae)

    No full text
    The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomotor activity was measured for both sexes and at four densities (with mixed sexes) during a full light and dark (L:D) cycle at temperatures ranging from 10 to 40ºC. Locomotor activity during daytime increased with temperature at all densities until reaching 30ºC and then decreased. Highdensity treatments significantly reduced the locomotor activity per fly, except at 15ºC. For both sexes, daytime activity also increased with temperature until reaching 30 and 35ºC for males and females, respectively, and thereafter decreased. Furthermore, males showed a significantly higher and more predictable locomotor activity than females. During nighttime, locomotor activity was considerably lower for all treatments. Altogether the results of the current study show that there is a significant interaction of temperature and density on daytime locomotor activity of M. domestica and that houseflies are likely to show significant changes in locomotor activity with change in temperature

    Responses of terrestrial polar arthropods to high and increasing temperatures

    Full text link
    ABSTRACT Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.</jats:p
    corecore