1,309 research outputs found

    Vortices and turbulence in trapped atomic condensates

    Get PDF
    After over a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose-Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices and superfluidity, and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates

    Dynamic Critical Phenomena in Trapped Bose Gases

    Full text link
    Nonlinear dynamics of a trapped Bose-Einstein condensate, subject to the action of a resonant external field, is studied. This field produces a spatio-temporal modulation of the trapping potential with the frequency close to the transition frequency between the ground state and a higher energy level. The evolution equations of fractional populations display a kind of critical phenomena at a critical line on the manifold of the system parameters. It is demonstrated that there exists a direct analogy between dynamical instability at this line and critical phenomena at a critical line of a related averaged system.Comment: Latex file, 7 pages, no figure
    • …
    corecore