47,484 research outputs found
Spherically symmetric trapping horizons, the Misner-Sharp mass and black hole evaporation
Understood in terms of pure states evolving into mixed states, the
possibility of information loss in black holes is closely related to the global
causal structure of spacetime, as is the existence of event horizons. However,
black holes need not be defined by event horizons, and in fact we argue that in
order to have a fully unitary evolution for black holes, they should be defined
in terms of something else, such as a trapping horizon. The Misner-Sharp mass
in spherical symmetry shows very simply how trapping horizons can give rise to
black hole thermodynamics, Hawking radiation and singularities. We show how the
Misner-Sharp mass can also be used to give insights into the process of
collapse and evaporation of locally defined black holes.Comment: 9 pages, 10 figure
Isospectral Potentials from Modified Factorization
Factorization of quantum mechanical potentials has a long history extending
back to the earliest days of the subject. In the present paper, the
non-uniqueness of the factorization is exploited to derive new isospectral
non-singular potentials. Many one-parameter families of potentials can be
generated from known potentials using a factorization that involves
superpotentials defined in terms of excited states of a potential. For these
cases an operator representation is available. If ladder operators are known
for the original potential, then a straightforward procedure exists for
defining such operators for its isospectral partners. The generality of the
method is illustrated with a number of examples which may have many possible
applications in atomic and molecular physics.Comment: 8 pages, 4 figure
Heating of ions by low-frequency Alfv\'{e}n waves in partially ionized plasmas
In the solar atmosphere, the chromospheric and coronal plasmas are much
hotter than the visible photosphere. The heating of the solar atmosphere,
including the partially ionized chromosphere and corona, remains largely
unknown. In this paper we demonstrate that the ions can be substantially heated
by Alfv\'{e}n waves with very low frequencies in partially ionized low beta
plasmas. This differs from other Alfv\'{e}n wave related heating mechanisms
such as ion-neutral collisional damping of Alfv\'{e}n waves and heating
described by previous work on resonant Alfv\'{e}n wave heating. In this paper,
we find that the non-resonant Alfv\'{e}n wave heating is less efficient in
partially ionized plasmas than when there are no ion-neutral collisions, and
the heating efficiency depends on the ratio of the ion-neutral collision
frequency to the ion gyrofrequency.Comment: Published as Letter
Transport through two-level quantum dots weakly coupled to ferromagnetic leads
Spin-dependent transport through a two-level quantum dot in the sequential
tunneling regime is analyzed theoretically by means of a real-time diagrammatic
technique. It is shown that the current, tunnel magnetoresistance, and shot
noise (Fano factor) strongly depend on the transport regime, providing a
detailed information on the electronic structure of quantum dots and their
coupling to external leads. When the dot is asymmetrically coupled to the
leads, a negative differential conductance may occur in certain bias regions,
which is associated with a super-Poissonian shot noise. In the case of a
quantum dot coupled to one half-metallic and one nonmagnetic lead, one finds
characteristic Pauli spin blockade effects. Transport may be also suppressed
when the dot levels are coupled to the leads with different coupling strengths.
The influence of an external magnetic field on transport properties is also
discussed.Comment: 12 pages, 8 figure
Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering
We study the Kondo effect in a quantum dot embedded in a mesoscopic ring
taking into account intradot spin-flip scattering . Based on the finite-
slave-boson mean-field approach, we find that the Kondo peak in the density of
states is split into two peaks by this coherent spin-flip transition, which is
responsible for some interesting features of the Kondo-assisted persistent
current circulating the ring: (1) strong suppression and crossover to a sine
function form with increasing ; (2) appearance of a "hump" in the
-dependent behavior for odd parity. -induced reverse of the persistent
current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let
Hemodynamic evaluation using four-dimensional flow magnetic resonance imaging for a patient with multichanneled aortic dissection
The hemodynamic function of multichanneled aortic dissection (MCAD) requires close monitoring and effective management to avoid potentially catastrophic sequelae. This report describes a 47-year-old man who underwent endovascular repair based on findings from four-dimensional (4D) flow magnetic resonance imaging of an MCAD. The acquired 4D flow data revealed complex, bidirectional flow patterns in the false lumens and accelerated blood flow in the compressed true lumen. The collapsed abdominal true lumen expanded unsatisfactorily after primary tear repair, which required further remodeling with bare stents. This case study demonstrates that hemodynamic analysis using 4D flow magnetic resonance imaging can help understand the complex pathologic changes of MCAD
Optical Response of Solid CO as a Tool for the Determination of the High Pressure Phase
We report first-principles calculations of the frequency dependent linear and
second-order optical properties of the two probable extended-solid phases of
CO--V, i.e. and . Compared to the parent
phase the linear optical susceptibility of both phases is much smaller. We find
that and differ substantially in their linear optical
response in the higher energy regime. The nonlinear optical responses of the
two possible crystal structures differ by roughly a factor of five. Since the
differences in the nonlinear optical spectra are pronounced in the low energy
regime, i.e. below the band gap of diamond, measurements with the sample inside
the diamond anvil cell are feasible. We therefore suggest optical experiments
in comparison with our calculated data as a tool for the unambiguous
identification of the high pressure phase of CO.Comment: 4 pages 2 fig
Pion Decay Constant, and Chiral Log from Overlap Fermions
We report our calculation of the pion decay constant , the axial
renormalization constant , and the quenched chiral logarithms from the
overlap fermions. The calculation is done on a quenched lattice at
fm using tree level tadpole improved gauge action. The smallest pion
mass we reach is about 280 MeV. The lattice size is about 4 times the Compton
wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure
Effect of the Kondo correlation on thermopower in a Quantum Dot
In this paper we study the thermopower of a quantum dot connected to two
leads in the presence of Kondo correlation by employing a modified second-order
perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev.
Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium
distribution Green's function and its validity is further checked with regard
to the Onsager relation. Numerical results demonstrate that the sign of the
thermopower can be changed by tuning the energy level of the quantum dot,
leading to a oscillatory behavior with a suppressed magnitude due to the Kondo
effect. We also calculate the thermal conductance of the system, and find that
the Wiedemann-Franz law is obeyed at low temperature but violated with
increasing temperature, corresponding to emerging and quenching of the Kondo
effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed
Matte
- …