11 research outputs found

    Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies

    Get PDF
    Manufacturing W-Cu composite nanopowders was performed via joint reduction of CuO and WO3 oxides with various ratios (W:Cu = 2:1, 1:1, 1:3, 1:13.5) using combined Mg–C reducer. Combustion synthesis was used to synthesize homogeneous composite powders of W-Cu and hot explosive consolidation (HEC) technique was utilized to fabricate dense compacts from ultrafine structured W-Cu powders. Compact samples obtained from nanometer sized SHS powders demonstrated weak relation between the susceptibility and the applied magnetic field in comparison with the W and Cu containing micrometer grain size of metals. The density, microstructural uniformity and mechanical properties of SHS&HEC prepared samples were also evaluated. Internal friction (Q-1) and Young modulus (E) of fabricated composites studied for all samples indicated that the temperature 1000 °С is optimal for full annealing of microscopic defects of structure and internal stresses. Improved characteristics for Young modulus and internal friction were obtained for the W:Cu = 1:13.5 composite. According to microhardness measurement results, W-Cu nanopowders obtained by SHS method and compacted by HEC technology were characterized by enhanced (up to 85%) microhardness

    Parametric Study on In Situ Laser Powder Bed Fusion of Mo(Si1−x,Alx)2

    No full text
    Mo(Si1−x,Alx)2 composites were produced by a pulsed laser reactive selective laser melting of MoSi2 and 30 wt.% AlSi10Mg powder mixture. The parametric study, altering the laser power between 100 and 300 W and scan speed between 400 and 1500 mm·s−1, has been conducted to estimate the effect of processing parameters on printed coupon samples’ quality. It was shown that samples prepared at 150–200 W laser power and 400–500 mm·s−1 scan speed, as well as 250 W laser power along with 700 mm·s−1 scan speed, provide a relatively good surface finish with 6.5 ± 0.5 µm–10.3 ± 0.8 µm roughness at the top of coupons, and 9.3 ± 0.7 µm–13.2 ± 1.1 µm side surface roughness in addition to a remarkable chemical and microstructural homogeneity. An increase in the laser power and a decrease in the scan speed led to an apparent improvement in the densification behavior resulting in printed coupons of up to 99.8% relative density and hardness of ~600 HV1 or ~560 HV5. The printed parts are composed of epitaxially grown columnar dendritic melt pool cores and coarser dendrites beyond the morphological transition zone in overlapped regions. An increase in the scanning speed at a fixed laser power and a decrease in the power at a fixed scan speed prohibited the complete single displacement reaction between MoSi2 and aluminum, leading to unreacted MoSi2 and Al lean hexagonal Mo(Si1−x,Alx)2 phase

    Combustion Synthesis and Reactive Spark Plasma Sintering of Non-Equiatomic CoAl-Based High Entropy Intermetallics

    No full text
    The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples. The interaction between the components during heating to 1600 °C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 °C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (σp = 2.79 GPa, σ0.2 = 1.82 GPa, ε = 11.5% at 400 °C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice

    Combustion Synthesis and Reactive Spark Plasma Sintering of Non-Equiatomic CoAl-Based High Entropy Intermetallics

    No full text
    The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples. The interaction between the components during heating to 1600 °C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 °C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (σp = 2.79 GPa, σ0.2 = 1.82 GPa, ε = 11.5% at 400 °C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice
    corecore