272 research outputs found
Discreteness-induced Transition in Catalytic Reaction Networks
Drastic change in dynamics and statistics in a chemical reaction system,
induced by smallness in the molecule number, is reported. Through stochastic
simulations for random catalytic reaction networks, transition to a novel state
is observed with the decrease in the total molecule number N, characterized by:
i) large fluctuations in chemical concentrations as a result of intermittent
switching over several states with extinction of some molecule species and ii)
strong deviation of time averaged distribution of chemical concentrations from
that expected in the continuum limit, i.e., . The origin of
transition is explained by the deficiency of molecule leading to termination of
some reactions. The critical number of molecules for the transition is obtained
as a function of the number of molecules species M and that of reaction paths
K, while total reaction rates, scaled properly, are shown to follow a universal
form as a function of NK/M
Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
Within the class of stochastic cellular automata models of traffic flows, we
look at the velocity dependent randomization variant (VDR-TCA) whose parameters
take on a specific set of extreme values. These initial conditions lead us to
the discovery of the emergence of four distinct phases. Studying the
transitions between these phases, allows us to establish a rigorous
classification based on their tempo-spatial behavioral characteristics. As a
result from the system's complex dynamics, its flow-density relation exhibits a
non-concave region in which forward propagating density waves are encountered.
All four phases furthermore share the common property that moving vehicles can
never increase their speed once the system has settled into an equilibrium
Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box
Size segregation of granular mixtures which are almost completely packed in a
rotating drum is discussed with an effective simulation and a brief analysis.
Instead of a 3D drum, we simulate 2D rotating thin box which is almost
completely packed with granular mixtures. The phase inversion of radially
segregated pattern which was found in a 3D experiment are qualitatively
reproduced with this simulation, and a brief analysis is followed. Moreover in
our simulation, a global convection appears after radial segregation pattern is
formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M
Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane
We investigate the influences of the excluded volume of molecules on
biochemical reaction processes on 2-dimensional surfaces using a model of
signal transduction processes on biomembranes. We perform simulations of the
2-dimensional cell-based model, which describes the reactions and diffusion of
the receptors, signaling proteins, target proteins, and crowders on the cell
membrane. The signaling proteins are activated by receptors, and these
activated signaling proteins activate target proteins that bind autonomously
from the cytoplasm to the membrane, and unbind from the membrane if activated.
If the target proteins bind frequently, the volume fraction of molecules on the
membrane becomes so large that the excluded volume of the molecules for the
reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the
signal flow, defined as the activation frequency of target proteins, as
follows. With an increase in the binding rate of target proteins, the signal
flow varies by i) monotonically increasing; ii) increasing then decreasing in a
bell-shaped curve; or iii) increasing, decreasing, then increasing in an
S-shaped curve. We further demonstrate that the excluded volume of molecules
influences the hierarchical molecular distributions throughout the reaction
processes. In particular, when the system exhibits a large signal flow, the
signaling proteins tend to surround the receptors to form receptor-signaling
protein clusters, and the target proteins tend to become distributed around
such clusters. To explain these phenomena, we analyze the stochastic model of
the local motions of molecules around the receptor.Comment: 31 pages, 10 figure
Understanding and simulating the material behavior during multi-particle irradiations
A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems
Localized bioconvection of Euglena caused by phototaxis in the lateral direction
Euglena, a swimming micro-organism, exhibited a characteristic bioconvection
that was localized at the center of a sealed chamber under bright illumination
to induce negative phototaxis. This localized pattern consisted of high-density
spots, in which convection was found. These observations were reproduced by a
mathematical model that was based on the phototaxis of individual cells in both
the vertical and lateral directions. Our results indicate that this convection
is maintained by upward swimming, as with general bioconvection, and the
localization originates from lateral phototaxis
Knowledge in process? Exploring barriers between epidemiological research and local health policy development
The Redes de Trueque (RT) thrived during the economic crisis of 2001 – 2002 in Argentina and still stand out as one of the largest Complementary Currency System in the world. These local exchange networks reach a large scale during times of severe economic distress, but as large non-state initiatives, they pose a governance problem. Four types of governance systems were structured within the Argentine RT, of varying degrees of sustainability: a) loosely regulated market systems, b) hierarchies, c) associational regional networks, and d) local communities. Based on a four dimensional analytical framework, this paper discusses the rules of governance and sustainability of the governance systems in the RT. It found that some became more sustainable than others in terms of achieving combinations of scale and organisational modes
New Insights into the Mechanism of Visible Light Photocatalysis
ABSTRACT: In recent years, the area of developing visible-lightactive photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron− hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes
Phonon driven transport in amorphous semiconductors: Transition probabilities
Inspired by Holstein's work on small polaron hopping, the evolution equations
of localized states and extended states in presence of atomic vibrations are
derived for an amorphous semiconductor. The transition probabilities are
obtained for four types of transitions: from one localized state to another
localized state, from a localized state to an extended state, from an extended
state to a localized state, and from one extended state to another extended
state. At a temperature not too low, any process involving localized state is
activated. The computed mobility of the transitions between localized states
agrees with the observed `hopping mobility'. We suggest that the observed
`drift mobility' originates from the transitions from localized states to
extended states. Analysis of the transition probability from an extended state
to a localized state suggests that there exists a short-lifetime belt of
extended states inside conduction band or valence band. It agrees with the fact
that photoluminescence lifetime decreases with frequency in a-Si/SiO
quantum well while photoluminescence lifetime is not sensitive to frequency in
c-Si/SiO structure.Comment: 41 pages, 3 figures, submitted to Phys. Rev.
- …