422 research outputs found

    Asymptotic Behavior of the Correlator for Polyakov Loops

    Get PDF
    The asymptotic behavior of the correlator for Polyakov loop operators separated by a large distance RR is determined for high temperature QCD. It is dominated by nonperturbative effects related to the exchange of magnetostatic gluons. To analyze the asymptotic behavior, the problem is formulated in terms of the effective field theory of QCD in 3 space dimensions. The Polyakov loop operator is expanded in terms of local gauge-invariant operators constructed out of the magnetostatic gauge field, with coefficients that can be calculated using resummed perturbation theory. The asymptotic behavior of the correlator is exp(MR)/R\exp(-MR)/R, where MM is the mass of the lowest-lying glueball in (2+1)(2+1)-dimensional QCD. This result implies that existing lattice calculations of the Polyakov loop correlator at the highest temperatures available do not probe the true asymptotic region in RR.Comment: 10 pages, NUHEP-TH-94-2

    Heavy Quark Free Energies and Screening in SU(2) Gauge Theory

    Full text link
    We investigate the singlet, triplet and colour average heavy quark free energies in SU(2) pure gauge theory at various temperatures T. We focus on the long distance behaviour of the free energies, studying in particular the temperature dependence of the string tension and the screening masses. The results are qualitatively similar to the SU(3) scenario, except near the critical temperature Tc of the deconfining transition. Finally we test a recently proposed method to renormalize the Polyakov loop.Comment: 5 pages, 4 figures, contribution to the Proceedings of SEWM 2002 (Heidelberg

    Quarkonium Suppression

    Get PDF
    I discuss quarkonium suppression in equilibriated strongly interacting matter. After a brief review of basic features of quarkonium production I discuss the application of recent lattice data on the heavy quark potential to the problem of quarkonium dissociation as well as the problem of direct lattice determination of quarkonium properties in finite temperature lattice QCD.Comment: Invited plenary talk presented on 4th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP-2001), November 26-30, 2001, Jaipur; 12 pp, LaTeX, uses pramana.st

    Linking the chiral and deconfinement phase transitions

    Full text link
    We show that the electric glueball becomes critical at the end-point of the deconfinement phase transition in finite temperature QCD. Based on this observation and existing lattice data, we argue that the chiral phase transition at a zero quark mass and the deconfinement phase transition at an infinite quark mass are continuously connected by the glueball-sigma mixing.Comment: 4 pages, terminology corrected. To appear in Phys. Rev.

    Thermodynamics of lattice QCD with two light quark flavours on a 16^3 x 8 lattice II

    Get PDF
    We have extended our earlier simulations of the high temperature behaviour of lattice QCD with two light flavours of staggered quarks on a 163×816^3 \times 8 lattice to lower quark mass (m_q=0.00625). The transition from hadronic matter to a quark-gluon plasma is observed at 6/g2=5.49(2)6/g^2=5.49(2) corresponding to a temperature of Tc140T_c \approx 140MeV. We present measurements of observables which probe the nature of the quark-gluon plasma and serve to distinguish it from hadronic matter. Although the transition is quite abrupt, we have seen no indications that it is first order.Comment: 23 pages, RevteX, 6 encapsulated postscript figure

    Phase structure of lattice QCD for general number of flavors

    Full text link
    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors NF=6N_F=6--360 with degenerate-mass quarks, we find that when NF7N_F \ge 7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λd\Lambda_d which is the physical scale characterizing the phase transition in the weak coupling region: When NF17N_F \ge 17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16NF716 \ge N_F \ge 7, there is a non-trivial IR fixed point and therefore the theory is non-trivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for NF6N_F \le 6.Comment: RevTeX, 20 pages, 43 PS figure

    Heavy Quark Potentials in Quenched QCD at High Temperature

    Get PDF
    Heavy quark potentials are investigated at high temperatures. The temperature range covered by the analysis extends from TT values just below the deconfinement temperature up to about 4Tc4 T_c in the deconfined phase. We simulated the pure gauge sector of QCD on lattices with temporal extents of 4, 6 and 8 with spatial volumes of 32332^3. On the smallest lattice a tree level improved action was employed while in the other two cases the standard Wilson action was used. Below TcT_c we find a temperature dependent logarithmic term contributing to the confinement potential and observe a string tension which decreases with rising temperature but retains a finite value at the deconfinement transition. Above TcT_c the potential is Debye-screened, however simple perturbative predictions do not apply.Comment: 20 pages, 9 figure

    Relation between the Polyakov loop and the chiral order parameter at strong coupling

    Full text link
    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature by using the Gocksch-Ogilvie model with fundamental or adjoint quarks. The model is based on the double expansion of strong coupling and large dimensionality on the lattice. In an analytic way with the mean field approximation employed, we show that the confined phase must be accompanied by the spontaneous breaking of the chiral symmetry for both fundamental and adjoint quarks. Then we proceed to numerical analysis to look into the coupled dynamics of the Polyakov loop and the chiral order parameter. In the case of fundamental quarks, the pseudo-critical temperature inferred from the Polyakov loop behavior turns out to coincide with the pseudo-critical temperature of the chiral phase transition. We discuss the physical implication of the coincidence of the pseudo-critical temperatures in two extreme cases; one is the deconfinement dominance and the other is the chiral dominance. As for adjoint quarks, the deconfinement transition of first order persists and the chiral phase transition occurs distinctly at higher temperature than the deconfinement transition does. The present model study gives us a plausible picture to understand the results from the lattice QCD and aQCD simulations.Comment: 19 pages, 9 figures, to appear in Phys.Rev.D. Appendix A is modified; references are adde

    Damage Detection in Tensegrity using Interacting Particle-Ensemble Kalman Filter

    Get PDF
    The 10th EWSHM, originally scheduled for the first week of July 2020, is planned to be held the first week of July 2022 in Palermo.International audienceTensegrity structures form a special class of truss with dedicated cables and bars, that take tension and compression, respectively. To ensure equilibrium, the tensegrity members are required to be prestressed. Over prolonged usage, the cables may lose their prestress while bars may buckle, affecting the structural stiffness as well as its dynamic properties. The stiffness of tensegrities also vary with the load even in the absence of damage. This can potentially mask the effect of damage leading to a false impression of tensegrity health. This poses a major challenge in tensegrity health monitoring especially when the load is stochastic and unknown. Present study develops a vibration based output-only time-domain approach for monitoring the health of any tensegrity in the presence of uncertainties due to ambient force and measurement noise. An Interacting Particle Ensemble Kalman Filter (IPEnKF) has been used that can efficiently monitor tensegrity health from contaminated response data. IPEnKF combines a bank of Ensemble Kalman Filters to estimate response states while running within a Particle Filter envelop that estimates a set of location based health parameters. Further to make damage detection cheaper, strain responses are used as measurements. The efficiency of the proposed methodology has been demonstrated using numerical experiments performed on a simplex tensegrity

    RIXS observation of bond-directional nearest-neighbor excitations in the Kitaev material Na2_2IrO3_3

    Full text link
    Spin-orbit coupling locks spin direction and spatial orientation and generates, in semi-classical magnets, a local spin easy-axis and associated ordering. Quantum spin-1/2's defy this fate: rather than spins becoming locally anisotropic, the spin-spin interactions do. Consequently interactions become dependent on the spatial orientation of bonds between spins, prime theoretical examples of which are Kitaev magnets. Bond-directional interactions imply the existence of bond-directional magnetic modes, predicted spin excitations that render crystallographically equivalent bonds magnetically inequivalent, which yet have remained elusive experimentally. Here we show that resonant inelastic x-ray scattering allows us to explicitly probe the bond-directional character of magnetic excitations. To do so, we use a scattering plane spanned by one bond and the corresponding spin component and scan a range of momentum transfer that encompasses multiple Brillouin zones. Applying this approach to Na2_2IrO3_3 we establish the different bond-directional characters of magnetic excitations at 10 meV and 45 meV. Combined with the observation of spin-spin correlations that are confined to a single bond, this experimentally validates the Kitaev character of exchange interactions long proposed for this material.Comment: 6 pages, 5 figures, plus 4 pages Supplementary Information (incl. 5 figures
    corecore