26 research outputs found

    Bone Morphogenetic Protein-2 Promotes Osteosarcoma Growth by Promoting Epithelial-Mesenchymal Transition (EMT) Through the Wnt/b-Catenin Signaling Pathway

    Get PDF
    The correlation between BMP-2 and osteosarcoma growth has gained increased interest in the recent years, however, there is still no consensus. In this study, we tested the effects of BMP-2 on osteosarcoma cells through both in vitro and in vivo experiments. The effect of BMP-2 on the proliferation, migration and invasion of osteosarcoma cells was tested in vitro. Subcutaneous and intratibial tumor models were used for the in vivo experiments in nude mice. The effects of BMP-2 on EMT of osteosarcoma cells and the Wnt/β-catenin signaling pathway were also tested using a variety of biochemical methods. In vitro tests did not show a significant effect of BMP-2 on tumor cell proliferation. However, BMP-2 increased the mobility of tumor cells and the invasion assay demonstrated that BMP-2 promoted invasion of osteosarcoma cells in vitro. In vivo animal study showed that BMP-2 dramatically enhanced tumor growth. We also found that BMP-2 induced EMT of osteosarcoma cells. The expression levels of Axin2 and Dkk-1 were both down regulated by BMP-2 treatment, while β-catenin, c-myc and Cyclin-D1 were all upregulated. The expression of Wnt3α and p-GSK-3β were also significantly upregulated indicating that the Wnt/β-catenin signaling pathway was activated during the EMT of osteosarcoma driven by BMP-2. From this study, we can conclude that BMP-2 significantly promotes growth of osteosarcoma cells (143B, MG63), and enhances mobility and invasiveness of tumor cells as demonstrated in vitro. The underlying mechanism might be that BMP-2 promotes EMT of osteosarcoma through the Wnt/β-catenin signaling pathway. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1638–1648, 2019. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM

    Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    Get PDF
    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication

    Antiproliferative activity of trans-Avicennol from Zanthoxylum chiloperone var. angustifolium against human cancer stem cells

    No full text
    International audienceZanthoxylum chiloperone var. angustifolium root bark was studied with the aim of finding novel molecules able to overcome cancer stem cell chemoresistance. Purification of a methanol-soluble extract resulted in the isolation of a known pyranocoumarin, trans-avicennol (1). Compound 1 demonstrated antiproliferative activity on glioma-initiating cells, whereas it was inactive on human neural stem cells. trans-Avicennol (1) activated the MAPK/ERK pathway and was also evaluated for its ability to inhibit the enzyme indoleamine-2,3-dioxygenase

    Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Get PDF
    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics

    Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma.

    No full text
    Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPα-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2 RFP) and microglia (Cx3cr1 GFP). We show that even in the absence of phagocytizing macrophages (Ccr2 RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications
    corecore