8 research outputs found

    Pulsed electric fields in combination with vacuum impregnation for improving freezing tolerance of vegetables

    No full text
    Freezing is a widely used method of preserving food products. Efforts are currently being directed towards improving the quality of sensitive tissues of plant foods such as leaves, after freezing and thawing. One of the methods under investigation is the combination of vacuum impregnation (VI) with cryoprotectants and the application of a pulsed electric field (PEF) to the plant tissue prior to freezing. In this chapter were identify mechanisms for the efficient introduction of a cryoprotectant molecule into the heterogeneous structure of leaf tissue and improve our understanding of the consequences of the introduction of this foreign molecule into the tissue regarding cell metabolism, freezing point, and ice propagation rate. To obtain precise information on the electroporation of internally located cells, a three-dimensional numerical model of the cross section of a leaf was developed. Validation of the models showed the importance of the wax layer and stomata for the successful electroporation of all cells in the tissue. VI, and the subsequent application of PEF, increased the metabolic activity of the tissue. The increase in metabolic activity after VI was accompanied by the accumulation of trehalose-6-phosphate in the cells. Leaves impregnated with trehalose, sucrose, glucose, and mannitol exhibited significantly lower ice propagation rates and higher freezing temperatures than untreated controls. Leaves subjected to PEF also showed higher freezing temperatures than untreated leaves; however, the ice propagation rate was not influenced by PEF

    Responses of plant cells and tissues to pulsed electric field treatments

    No full text
    Cell membrane electroporation/permeabilization may be achieved without affecting cell viability through strict control of the electric pulse parameters. This process is referred to as reversible permeabilization. Even if the cells survive the electric field treatment, they are subjected to stress due to the opening of pores and the struggle of the cells to recover their normal functionality. Very little is known about what actually occurs in the cell and its membranes at the molecular level upon reversible electroporation, and the physiological responses to pulsed electric field (PEF)-induced stress are still largely unknown. This chapter explores the current state of the art on the influence of the complexity of plant tissues on electroporation. Focusing on reversible electroporation, metabolic responses of plant cells and tissues induced by PEF application are also reviewed. One of the first challenges when electroporating plant tissue is their heterogeneous structures where cells vary in shape, size, and cell wall structure. This heterogeneity influences the effect of different electric fields protocols aiming at permeabilizing all cells in the tissue. Once cells are reversibly permeabilized, physiological responses to PEF-induced stress include the production of reactive oxygen species, mobilization of stored energy, activation of stress-related genes, and the production of secondary metabolites. The application of reversible PEF has also been shown to barley seed germination as well as to increase the strength of the cell wall in potatoes and, in consequence, their textural properties. This chapter finishes by revising the effect of reversible PEF on protoplasts (plant cells where the cell walls have been removed) and, in consequence, on the regeneration of new plants. Overall, reports on reversible permeabilization of plant cells and tissues are not common in the literature; however, they have laid the foundation for a fascinating area of research and technological innovation

    Electroporation in Food Processing and Biorefinery

    No full text

    Minimally Processed Meat and Fish Products

    No full text
    corecore