327 research outputs found

    Pancharatnam and Berry Phases in Three-Level Photonic Systems

    Get PDF
    A theoretical analysis of Pancharatnam and Berry phases is made for biphoton three-level systems, which are produced via frequency degenerate co-linear spontaneous parametric down conversion (SPDC). The general theory of Pancharatnam phases is discussed with a special emphasis on geodesic 'curves'in Hilbert space. Explicit expressions for Pancharatnam, dynamical and geometrical phases are derived for the transformations produced by linear phase-converters. The problem of gauge invariance is treated along all the article

    Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films

    Full text link
    Plane EM waves transmitted through nano-corrugated metallic thin films produce evanescent waves which include the information on the nano-structures. The production of the evanescent waves at the metallic surface are analyzed. A microsphere located above the metallic surface collects the evanescent waves which are converted into propagating waves. The equations for the refraction at the boundary of the microsphere and the use of Snell's law for evanescent waves are developed. The magnification of the nano-structure images is explained by a geometric optics description, but the high resolution is related to the evanescent waves properties.Comment: 12 page

    Improvement of measurement accuracy in SU(1,1) interferometers

    Get PDF
    We consider an SU(1,1) interferometer employing four-wave mixers that is fed with two-mode states which are both coherent and intelligent states of the SU(1,1) Lie group. It is shown that the phase sensitivity of the interferometer can be essentially improved by using input states with a large photon-number difference between the modes.Comment: LaTeX, 5 pages, 1 figure (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/interfer_graph/qopt.ps.gz ). More information on http://www.technion.ac.il/~brif/science.htm

    Nonadiabatic geometric phase induced by a counterpart of the Stark shift

    Full text link
    We analyse the geometric phase due to the Stark shift in a system composed of a bosonic field, driven by time-dependent linear amplification, interacting dispersively with a two-level (fermionic) system. We show that a geometric phase factor in the joint state of the system, which depends on the fermionic state (resulting form the Stark shift), is introduced by the amplification process. A clear geometrical interpretation of this phenomenon is provided. We also show how to measure this effect in an interferometric experiment and to generate geometric "Schrodinger cat"-like states. Finally, considering the currently available technology, we discuss a feasible scheme to control and measure such geometric phases in the context of cavity quantum electrodynamics

    Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses

    Get PDF
    A single extracellular stimulus can promote diverse behaviors among isogenic cells by differentially regulated signaling networks. We examined Ca2+ signaling in response to VEGF (vascular endothelial growth factor), a growth factor that can stimulate different behaviors in endothelial cells. We found that altering the amount of VEGF signaling in endothelial cells by stimulating them with different VEGF concentrations triggered distinct and mutually exclusive dynamic Ca2+ signaling responses that correlated with different cellular behaviors. These behaviors were cell proliferation involving the transcription factor NFAT (nuclear factor of activated T cells) and cell migration involving MLCK (myosin light chain kinase). Further analysis suggested that this signal decoding was robust to the noisy nature of the signal input. Using probabilistic modeling, we captured both the stochastic and deterministic aspects of Ca2+ signal decoding and accurately predicted cell responses in VEGF gradients, which we used to simulate different amounts of VEGF signaling. Ca2+ signaling patterns associated with proliferation and migration were detected during angiogenesis in developing zebrafish

    Continuous photodetection model: quantum jump engineering and hints for experimental verification

    Get PDF
    We examine some aspects of the continuous photodetection model for photocounting processes in cavities. First, we work out a microscopic model that describes the field-detector interaction and deduce a general expression for the Quantum Jump Superoperator (QJS), that shapes the detector's post-action on the field upon a detection. We show that in particular cases our model recovers the QJSs previously proposed ad hoc in the literature and point out that by adjusting the detector parameters one can engineer QJSs. Then we set up schemes for experimental verification of the model. By taking into account the ubiquitous non-idealities, we show that by measuring the lower photocounts moments and the mean waiting time one can check which QJS better describes the photocounting phenomenon.Comment: 12 pages, 7 figures. Contribution to the conference Quantum Optics III, Pucon - Chile, November 27-30, 200

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure

    Aggregate Plaque Volume by Coronary Computed Tomography Angiography Is Superior and Incremental to Luminal Narrowing for Diagnosis of Ischemic Lesions of Intermediate Stenosis Severity

    Get PDF
    ObjectivesThis study examined the performance of percent aggregate plaque volume (%APV), which represents cumulative plaque volume as a function of total vessel volume, by coronary computed tomography angiography (CTA) for identification of ischemic lesions of intermediate stenosis severity.BackgroundCoronary lesions of intermediate stenosis demonstrate significant rates of ischemia. Coronary CTA enables quantification of luminal narrowing and %APV.MethodsWe identified 58 patients with intermediate lesions (30% to 69% diameter stenosis) who underwent invasive angiography and fractional flow reserve. Coronary CTA measures included diameter stenosis, area stenosis, minimal lumen diameter (MLD), minimal lumen area (MLA) and %APV. %APV was defined as the sum of plaque volume divided by the sum of vessel volume from the ostium to the distal portion of the lesion. Fractional flow reserve ≤0.80 was considered diagnostic of lesion-specific ischemia. Area under the receiver operating characteristic curve and net reclassification improvement (NRI) were also evaluated.ResultsTwenty-two of 58 lesions (38%) caused ischemia. Compared with nonischemic lesions, ischemic lesions had smaller MLD (1.3 vs. 1.7 mm, p = 0.01), smaller MLA (2.5 vs. 3.8 mm2, p = 0.01), and greater %APV (48.9% vs. 39.3%, p < 0.0001). Area under the receiver operating characteristic curve was highest for %APV (0.85) compared with diameter stenosis (0.68), area stenosis (0.66), MLD (0.75), or MLA (0.78). Addition of %APV to other measures showed significant reclassification over diameter stenosis (NRI 0.77, p < 0.001), area stenosis (NRI 0.63, p = 0.002), MLD (NRI 0.62, p = 0.001), and MLA (NRI 0.43, p = 0.01).ConclusionsCompared with diameter stenosis, area stenosis, MLD, and MLA, %APV by coronary CTA improves identification, discrimination, and reclassification of ischemic lesions of intermediate stenosis severity
    corecore