933 research outputs found

    Extending quantum mechanics entails extending special relativity

    Full text link
    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QM) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum nonlocality, and implies that special relativity (SR) has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.Comment: 17 pages, 1 figur

    On the origin of nonclassicality in single systems

    Full text link
    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility.Comment: Close to the published versio

    Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories

    Full text link
    We introduce the concept of cryptographic reduction, in analogy with a similar concept in computational complexity theory. In this framework, class AA of crypto-protocols reduces to protocol class BB in a scenario XX, if for every instance aa of AA, there is an instance bb of BB and a secure transformation XX that reproduces aa given bb, such that the security of bb guarantees the security of aa. Here we employ this reductive framework to study the relationship between security in quantum key distribution (QKD) and quantum secure direct communication (QSDC). We show that replacing the streaming of independent qubits in a QKD scheme by block encoding and transmission (permuting the order of particles block by block) of qubits, we can construct a QSDC scheme. This forms the basis for the \textit{block reduction} from a QSDC class of protocols to a QKD class of protocols, whereby if the latter is secure, then so is the former. Conversely, given a secure QSDC protocol, we can of course construct a secure QKD scheme by transmitting a random key as the direct message. Then the QKD class of protocols is secure, assuming the security of the QSDC class which it is built from. We refer to this method of deduction of security for this class of QKD protocols, as \textit{key reduction}. Finally, we propose an orthogonal-state-based deterministic key distribution (KD) protocol which is secure in some local post-quantum theories. Its security arises neither from geographic splitting of a code state nor from Heisenberg uncertainty, but from post-measurement disturbance.Comment: 12 pages, no figure, this is a modified version of a talk delivered by Anirban Pathak at Quantum 2014, INRIM, Turin, Italy. This version is published in Int. J. Quantum. Info
    corecore