58 research outputs found

    Composition dependent magnetic properties of iron oxide - polyaniline nanoclusters

    Get PDF
    Gamma - Iron Oxide prepared by sol -gel process was used to produce nanocomposites with polyaniline of varying aniline concentrations. TEM shows the presence of chain like structure for lower polyaniline concentration. The room temperature hysteresis curves show finite coercivity of 160 Oe for all the composites while the saturation magnetization was found to decrease with increasing polymer content. ZFC - FC magnetisation measurements indicate high blocking temperatures. It is believed that this indicates a strongly interacting system, which is also shown by our TEM results. Monte Carlo simulations performed on a random anisotropy model with dipolar and exchange inteactions match well with experimental results.Comment: 9 (nine) pages, 6 figures (jpeg and eps

    Magnetic properties of polypyrrole - coated iron oxide nanoparticles

    Full text link
    Iron oxide nanoparticles were prepared by sol -gel process. Insitu polymerization of pyrrole monomer in the presence of oxygen in iron oxide ethanol suspension resulted in a iron oxide - polypyrrole nanocomposite. The structure and magnetic properties were investigated for varying pyrrole concentrations. The presence of the gamma - iron oxide phase and polypyrrole were confirmed by XRD and FTIR respectively. Agglomeration was found to be comparatively much reduced for the coated samples, as shown by TEM. AC susceptibility measurements confirmed the superparamagnetic behaviour. Numerical simulations performed for an interacting model system are performed to estimate the anisotropy and compare favourably with experimental results.Comment: 11 pages,8 figure

    Interaction of oxygen (O+7) ion beam on polyaniline thin films

    Get PDF
    High-energy ion beam irradiation of the polymers is a good technique to modify the properties such as electrical conductivity, structural behaviour and mechanial properties. Polyaniline thin films doped with hydrochloric acid (HCl) were prepared by oxidation of ammonium persulphate. The effect of Swift Heavy Ions irradiation on the electrical and structural properties of polyaniline has been measured in this study. Polyaniline films were irradiated by oxygen ions (energy 80 MeV, charge state O+7) with fluence varying from 1 × 1010 to 3 × 1012 ions/cm2. The studies on electrical and structural properties of the irradiated polymers were investigated by measuring V-I using four probe set-up and X-ray diffraction (XRD) using Bruker AXS, X-ray powder diffractometer. V-I measurements shows an increase in the conductivity of the film, XRD pattern of the polymer shows that the crystallinity improved after the irradiation with Swift Heavy Ions (SHI), which could be attributed to cross linking mechanism.Subhash Chandra1*, S Annapoorni2, R G Sonkawade3, P K Kulriya3 Fouran Singh3, D K Avasthi3, J M S Rana1 and R C Ramola1 1Department of Physics, H N B Garhwal University, Badshahi Thaul Campus, Tehri Garhwal-249 199, Uttarakhand, India 2Department of Physics and Astrophysics, University of Delhi, Delhi-110 007, India 3Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi-110 067, India E-mail : [email protected] of Physics, H N B Garhwal University, Badshahi Thaul Campus, Tehri Garhwal-249 199, Uttarakhand, India Department of Physics and Astrophysics, University of Delhi, Delhi-110 007, India Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi-110 067, Indi

    Spin Pumping in Asymmetric Fe50Pt50/Cu/Fe20Ni80 Trilayer Structure

    Get PDF
    Herein, spin transport dynamics across asymmetric Fe50Pt50/Cu/Fe20Ni80 soft‐magnetic trilayer structure is reported and thereby modulation of magnetic parameters including damping and effective field is determined by means of the angular dependence of broadband ferromagnetic resonance measurements. At distinct precession of individual magnetic layer, spin‐pumping is found to be prevalent with expected linewidth increase. Mutual precession for wide range of resonance configuration reveals a collective reduction in anisotropy field of around 200 mT for both Fe50Pt50 and Fe20Ni80 systems. Subsequent observation of no‐excess interface damping shows the possible control of spin‐pumping effect by tuning the net flow of spin‐current in a multilayer structure. These experimental findings have significance for microwave devices that require tunable anisotropy field in magnetic multilayers

    Phenotypic and Functional Characterization of Human Mammary Stem/Progenitor Cells in Long Term Culture

    Get PDF
    Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance

    Single domain magnetic arrays: role of disorder and interactions

    No full text
    The hysteresis of an array of interacting single domain magnetic particles is studied, where the particles interact via exchange and dipolar interactions. The dependence of the magnetic properties on the distribution of grain sizes, the density of the grains, the anisotropy energy and the exchange interactions in the array is investigated through Monte Carlo simulations for γFe2O3\gamma- {\rm Fe_2 O}_3 nanoparticle systems. We also present some experimental results on the γFe2O3\gamma - {\rm Fe_2 O}_3-polypyrrole nanocomposite system which agree with the trends observed in our simulations
    corecore