39,912 research outputs found

    Exchange coupling and magnetoresistance in CoFe/NiCu/CoFe spin-valves near the Curie point of the spacer

    Full text link
    Thermal control of exchange coupling between two strongly ferromagnetic layers through a weakly ferromagnetic Ni-Cu spacer and the associated magnetoresistance is investigated. The spacer, having a Curie point slightly above room temperature, can be cycled between its paramagnetic and ferromagnetic states by varying the temperature externally or using joule heating. It is shown that the giant magnetoresistance vanishes due to a strong reduction of the mean free path in the spacer at above ~30 % Ni concentration -- before the onset of ferromagnetism. Finally, a device is proposed and demonstrated which combines thermally controlled exchange coupling and large magnetoresistance by separating the switching and the read out elements.Comment: 4 pages, 4 figure

    Thermoelectrically Controlled Spin-Switch

    Full text link
    The search for novel spintronic devices brings about new ways to control switching in magnetic thin-films. In this work we experimentally demonstrate a device based on thermoelectrically controlled exchange coupling. The read out signal from a giant magnetoresistance element is controlled by exchange coupling through a weakly ferromagnetic Ni-Cu alloy. This exchange coupling is shown to vary strongly with changes in temperature, and both internal Joule heating and external heating is used to demonstrate magnetic switching. The device shows no degradation upon thermal cycling. Ways to further optimize the device performance are discussed. Our experimental results show a new way to thermoelectrically control magnetic switching in multilayers.Comment: 4 pages, 4 figure

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    A detailed study of quasinormal frequencies of the Kerr black hole

    Full text link
    We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The continued fraction method first proposed by Leaver is still the only known method stable and accurate for the numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm that it coincide with the n=8n=8 quasinormal frequency only at the Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure

    Relativistic Two-stream Instability

    Full text link
    We study the (local) propagation of plane waves in a relativistic, non-dissipative, two-fluid system, allowing for a relative velocity in the "background" configuration. The main aim is to analyze relativistic two-stream instability. This instability requires a relative flow -- either across an interface or when two or more fluids interpenetrate -- and can be triggered, for example, when one-dimensional plane-waves appear to be left-moving with respect to one fluid, but right-moving with respect to another. The dispersion relation of the two-fluid system is studied for different two-fluid equations of state: (i) the "free" (where there is no direct coupling between the fluid densities), (ii) coupled, and (iii) entrained (where the fluid momenta are linear combinations of the velocities) cases are considered in a frame-independent fashion (eg. no restriction to the rest-frame of either fluid). As a by-product of our analysis we determine the necessary conditions for a two-fluid system to be causal and absolutely stable and establish a new constraint on the entrainment.Comment: 15 pages, 2 eps-figure

    The fifth most prevalent disease is being neglected by public health organisations

    Get PDF
    The progress towards reduction of global mortality has produced an epidemiological transition towards non-fatal diseases, which challenge the ability of the world’s population to live in full health. Although traumatic dental injuries are not lethal, their treatment is more expensive (US$2 000 000–5 000 000 per million inhabitants) and time-consuming than that of all the other bodily injuries, making dental rehabilitation less likely among disadvantaged individuals. Since untreated traumatic dental injuries have a negative social, functional, and emotional effect in children and adolescents, differences in treatment of these injuries between children from different countries and social classes produce disparities in their quality of life
    corecore