174 research outputs found

    Conserved currents of massless fields of spin s>0

    Full text link
    A complete and explicit classification of all locally constructed conserved currents and underlying conserved tensors is obtained for massless linear symmetric spinor fields of any spin s>0 in four dimensional flat spacetime. These results generalize the recent classification in the spin s=1 case of all conserved currents locally constructed from the electromagnetic spinor field. The present classification yields spin s>0 analogs of the well-known electromagnetic stress-energy tensor and Lipkin's zilch tensor, as well as a spin s>0 analog of a novel chiral tensor found in the spin s=1 case. The chiral tensor possesses odd parity under a duality symmetry (i.e., a phase rotation) on the spin s field, in contrast to the even parity of the stress-energy and zilch tensors. As a main result, it is shown that every locally constructed conserved current for each s>0 is equivalent to a sum of elementary linear conserved currents, quadratic conserved currents associated to the stress-energy, zilch, and chiral tensors, and higher derivative extensions of these currents in which the spin s field is replaced by its repeated conformally-weighted Lie derivatives with respect to conformal Killing vectors of flat spacetime. Moreover, all of the currents have a direct, unified characterization in terms of Killing spinors. The cases s=2, s=1/2 and s=3/2 provide a complete set of conserved quantities for propagation of gravitons (i.e., linearized gravity waves), neutrinos and gravitinos, respectively, on flat spacetime. The physical meaning of the zilch and chiral quantities is discussed.Comment: 26 pages; final version with minor changes, accepted in Proc. Roy. Soc. A (London

    Parity violating spin-two gauge theories

    Full text link
    Nonlinear covariant parity-violating deformations of free spin-two gauge theory are studied in n>2 spacetime dimensions, using a linearized frame and spin-connection formalism, for a set of massless spin-two fields. It is shown that the only such deformations yielding field equations with a second order quasilinear form are the novel algebra-valued types in n=3 and n=5 dimensions already found in some recent related work concentrating on lowest order deformations. The complete form of the deformation to all orders in n=5 dimensions is worked out here and some features of the resulting new algebra-valued spin-two gauge theory are discussed. In particular, the internal algebra underlying this theory on 5-dimensional Minkowski space is shown to cause the energy for the spin-two fields to be of indefinite sign. Finally, a Kaluza-Klein reduction to n=4 dimensions is derived, giving a parity-violating nonlinear gauge theory of a coupled set of spin-two, spin-one, and spin-zero massless fields.Comment: 17 page

    Fractional Exact Solutions and Solitons in Gravity

    Full text link
    We survay our recent results on fractional gravity theory. It is also provided the Main Theorem on encoding of geometric data (metrics and connections in gravity and geometric mechanics) into solitonic hierarchies. Our approach is based on Caputo fractional derivative and nonlinear connection formalism.Comment: latex2e, 11pt, 10 pages with table of content; a summary of our talk at Conference "New Trends in Nanotechnology and Nonlinear Dynamical Systems", 25--27 July, 2010, \c{C}ankaya University, Ankara, Turke

    Symplectically-invariant soliton equations from non-stretching geometric curve flows

    Full text link
    A moving frame formulation of geometric non-stretching flows of curves in the Riemannian symmetric spaces Sp(n+1)/Sp(1)×Sp(n)Sp(n+1)/Sp(1)\times Sp(n) and SU(2n)/Sp(n)SU(2n)/Sp(n) is used to derive two bi-Hamiltonian hierarchies of symplectically-invariant soliton equations. As main results, multi-component versions of the sine-Gordon (SG) equation and the modified Korteweg-de Vries (mKdV) equation exhibiting Sp(1)×Sp(n1)Sp(1)\times Sp(n-1) invariance are obtained along with their bi-Hamiltonian integrability structure consisting of a shared hierarchy of symmetries and conservation laws generated by a hereditary recursion operator. The corresponding geometric curve flows in Sp(n+1)/Sp(1)×Sp(n)Sp(n+1)/Sp(1)\times Sp(n) and SU(2n)/Sp(n)SU(2n)/Sp(n) are shown to be described by a non-stretching wave map and a mKdV analog of a non-stretching Schr\"odinger map.Comment: 39 pages; remarks added on algebraic aspects of the moving frame used in the constructio

    Hierarchy of Conservation Laws of Diffusion--Convection Equations

    Full text link
    We introduce notions of equivalence of conservation laws with respect to Lie symmetry groups for fixed systems of differential equations and with respect to equivalence groups or sets of admissible transformations for classes of such systems. We also revise the notion of linear dependence of conservation laws and define the notion of local dependence of potentials. To construct conservation laws, we develop and apply the most direct method which is effective to use in the case of two independent variables. Admitting possibility of dependence of conserved vectors on a number of potentials, we generalize the iteration procedure proposed by Bluman and Doran-Wu for finding nonlocal (potential) conservation laws. As an example, we completely classify potential conservation laws (including arbitrary order local ones) of diffusion--convection equations with respect to the equivalence group and construct an exhaustive list of locally inequivalent potential systems corresponding to these equations.Comment: 24 page

    Lagrange Anchor for Bargmann-Wigner equations

    Full text link
    A Poincare invariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s > 1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law.Comment: A contribution to Proceedings of the XXXI Workshop on the Geometric Methods in Physic

    Fractional Analogous Models in Mechanics and Gravity Theories

    Full text link
    We briefly review our recent results on the geometry of nonholonomic manifolds and Lagrange--Finsler spaces and fractional calculus with Caputo derivatives. Such constructions are used for elaborating analogous models of fractional gravity and fractional Lagrange mechanics.Comment: latex2e, 11pt, 11 pages with table of content; it is summary of the results presented in our talk at the 3d Conference on "Nonlinear Science and Complexity", 28--31 July, 2010, \c{C}hankaya University, Ankara, Turke

    Conservation laws of scaling-invariant field equations

    Full text link
    A simple conservation law formula for field equations with a scaling symmetry is presented. The formula uses adjoint-symmetries of the given field equation and directly generates all local conservation laws for any conserved quantities having non-zero scaling weight. Applications to several soliton equations, fluid flow and nonlinear wave equations, Yang-Mills equations and the Einstein gravitational field equations are considered.Comment: 18 pages, published version in J. Phys. A:Math. and Gen. (2003). Added discussion of vorticity conservation laws for fluid flow; corrected recursion formula and operator for vector mKdV conservation law
    corecore