308 research outputs found

    Klein-Gordon and Dirac particles in non-constant scalar-curvature background

    Full text link
    The Klein-Gordon and Dirac equations are considered in a semi-infinite lab (x>0x > 0) in the presence of background metrics ds2=u2(x)ημνdxμdxνds^2 =u^2(x) \eta_{\mu\nu} dx^\mu dx^\nu and ds2=dt2+u2(x)ηijdxidxjds^2=-dt^2+u^2(x)\eta_{ij}dx^i dx^j with u(x)=e±gxu(x)=e^{\pm gx}. These metrics have non-constant scalar-curvatures. Various aspects of the solutions are studied. For the first metric with u(x)=egxu(x)=e^{gx}, it is shown that the spectrums are discrete, with the ground state energy Emin2=p2c2+g2c22E^2_{min}=p^2c^2 + g^2c^2\hbar^2 for spin-0 particles. For u(x)=egxu(x)=e^{-gx}, the spectrums are found to be continuous. For the second metric with u(x)=egxu(x)=e^{-gx}, each particle, depends on its transverse-momentum, can have continuous or discrete spectrum. For Klein-Gordon particles, this threshold transverse-momentum is 3g/2\sqrt{3}g/2, while for Dirac particles it is g/2g/2. There is no solution for u(x)=egxu(x)=e^{gx} case. Some geometrical properties of these metrics are also discussed.Comment: 14 pages, LaTeX, to be published in Int. Jour. Mod. Phys.

    Non-Douglas-Kazakov phase transition of two-dimensional generalized Yang-Mills theories

    Get PDF
    In two-dimensional Yang-Mills and generalized Yang-Mills theories for large gauge groups, there is a dominant representation determining the thermodynamic limit of the system. This representation is characterized by a density the value of which should everywhere be between zero and one. This density itself is determined through a saddle-point analysis. For some values of the parameter space, this density exceeds one in some places. So one should modify it to obtain an acceptable density. This leads to the well-known Douglas-Kazakov phase transition. In generalized Yang-Mills theories, there are also regions in the parameter space where somewhere this density becomes negative. Here too, one should modify the density so that it remains nonnegative. This leads to another phase transition, different from the Douglas-Kazakov one. Here the general structure of this phase transition is studied, and it is shown that the order of this transition is typically three. Using carefully-chosen parameters, however, it is possible to construct models with phase-transition orders not equal to three. A class of these non-typical models are also studied.Comment: 11 pages, accepted for publication in Eur. Phys. J.

    Cosmological coincidence problem in interacting dark energy models

    Full text link
    An interacting dark energy model with interaction term Q=λmHρm+λdHρdQ= \lambda_m H\rho_m+\lambda_dH\rho_d is considered. By studying the model near the transition time, in which the system crosses the w=-1 phantom-divide-line, the conditions needed to overcome the coincidence problem is investigated. The phantom model, as a candidate for dark energy, is considered and for two specific examples, the quadratic and exponential phantom potentials, it is shown that it is possible the system crosses the w=-1 line, meanwhile the coincidence problem is alleviated, the two facts that have root in observations.Comment: 15 pages, LaTeX. Some minor explanations are added. To be published in Phys. Rev.

    A new class of integrable diffusion-reaction processes

    Full text link
    We consider a process in which there are two types of particles, A and B, on an infinite one-dimensional lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion process (ASEP), and have also the following interactions: A+B -> B+B and B+A -> B+B, all occur with equal rate. We study this process by imposing four boundary conditions on ASEP master equation. It is shown that this model is integrable, in the sense that its N-particle S-matrix is factorized into a product of two-particle S-matrices and, more importantly, the two-particle S-matrix satisfy quantum Yang-Baxter equation. Using coordinate Bethe-ansatz, the N-particle wavefunctions and the two-particle conditional probabilities are found exactly. Further, by imposing four reasonable physical conditions on two-species diffusion-reaction processes (where the most important ones are the equality of the reaction rates and the conservation of the number of particles in each reaction), we show that among the 4096 types of the interactions which have these properties and can be modeled by a master equation and an appropriate set of boundary conditions, there are only 28 independent interactions which are integrable. We find all these interactions and also their corresponding wave functions. Some of these may be new solutions of quantum Yang-Baxter equation.Comment: LaTex,16 pages, some typos are corrected, will be appeared in Phys. Rev. E (2000

    Spin 0 and spin 1/2 particles in a spherically symmetric static gravity and a Coulomb field

    Full text link
    A relativistic particle in an attractive Coulomb field as well as a static and spherically symmetric gravitational field is studied. The gravitational field is treated perturbatively and the energy levels are obtained for both spin 0 (Klein-Gordon) and spin 1/2 (Dirac) particles. The results are shown to coincide with each other as well as the result of the nonrelativistic (Schrodinger) equation in the nonrelativistic limit.Comment: 12 page

    Transition from quintessence to phantom phase in quintom model

    Get PDF
    Assuming the Hubble parameter is a continuous and differentiable function of comoving time, we investigate necessary conditions for quintessence to phantom phase transition in quintom model. For power-law and exponential potential examples, we study the behavior of dynamical dark energy fields and Hubble parameter near the transition time, and show that the phantom-divide-line w=-1 is crossed in these models.Comment: LaTeX, 19 pages, four figures, some minor changes in Introduction, two figures added and the references updated, accepted for publication in Phys. Rev.

    Neutrino oscillation in a space-time with torsion

    Get PDF
    Using the Einstein-Cartan-Dirac theory, we study the effect of torsion on neutrino oscillation. We see that torsion cannot induce neutrino oscillation, but affects it whenever oscillation exists for other reasons. We show that the torsion effect on neutrino oscillation is as important as the neutrino mass effect, whenever the ratio of neutrino number density to neutrino energy is 1069\sim 10^{69} cm3^{-3} /eV, or the number density of the matter is 1069\sim 10^{69} cm3^{-3}.Comment: 7 pages, LaTex,Some typos corrected Journal: Int. J. Mod. Phys. A (1999) (will be appeared

    Remarks on generalized Gauss-Bonnet dark energy

    Full text link
    The modified gravity with F(R,G) Lagrangian, G is the Gauss-Bonnet invariant, is considered. It is shown that the phantom-divide-line crossing and the deceleration to acceleration transition generally occur in these models. Our results coincide with the known results of f(R)-gravity and f(G)-gravity models. The contribution of quantum effects to these transitions is calculated, and it is shown that in some special cases where there are no transitions in classical level, quantum contributions can induce transitions. The quantum effects are described via the account of conformal anomaly.Comment: 11 pages, LaTeX, a paragraph added, to be appeared in Phys. Rev.

    Torsion Phenomenology at the LHC

    Get PDF
    We explore the potential of the CERN Large Hadron Collider (LHC) to test the dynamical torsion parameters. The form of the torsion action can be established from the requirements of consistency of effective quantum field theory. The most phenomenologically relevant part of the torsion tensor is dual to a massive axial vector field. This axial vector has geometric nature, that means it does not belong to any representation of the gauge group of the SM extension or GUT theory. At the same time, torsion should interact with all fermions, that opens the way for the phenomenological applications. We demonstrate that LHC collider can establish unique constraints on the interactions between fermions and torsion field considerably exceeding present experimental lower bounds on the torsion couplings and its mass. It is also shown how possible non-universal nature of torsion couplings due to the renormalization group running between the Planck and TeV energy scales can be tested via the combined analysis of Drell-Yan and ttˉt\bar{t} production processes

    Electrostatic self-energy and Bekenstein entropy bound in the massive Schwinger model

    Full text link
    We obtain the electrostatic energy of two opposite charges near the horizon of stationary black-holes in the massive Schwinger model. Besides the confining aspects of the model, we discuss the Bekenstein entropy upper bound of a charged object using the generalized second law. We show that despite the massless case, in the massive Schwinger model the entropy of the black hole and consequently the Bekenstein bound are altered by the vacuum polarization.Comment: 14 pages, accepted for publication in "Gen. Rel. Grav. (2005)
    corecore