1,166 research outputs found
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
Photoemission studies of GaMnAs: Mn-concentration dependent properties
Using angle-resolved photoemission, we have investigated the development of
the electronic structure and the Fermi level pinnning in GaMnAs
with Mn concentrations in the range 1--6%. We find that the Mn-induced changes
in the valence-band spectra depend strongly on the Mn concentration, suggesting
that the interaction between the Mn ions is more complex than assumed in
earlier studies. The relative position of the Fermi level is also found to be
concentration-dependent. In particular we find that for concentrations around
3.5--5% it is located very close to the valence-band maximum, which is in the
range where metallic conductivity has been reported in earlier studies. For
concentration outside this range, larger as well as smaller, the Fermi level is
found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure
Transition temperature of ferromagnetic semiconductors: a dynamical mean field study
We formulate a theory of doped magnetic semiconductors such as
GaMnAs which have attracted recent attention for their possible use
in spintronic applications. We solve the theory in the dynamical mean field
approximation to find the magnetic transition temperature as a function
of magnetic coupling strength and carrier density . We find that
is determined by a subtle interplay between carrier density and magnetic
coupling.Comment: 4 pages, 4 figure
Carrier induced ferromagnetism in diluted magnetic semi-conductors
We present a theory for carrier induced ferromagnetism in diluted magnetic
semi-conductor (DMS). Our approach treats on equal footing quantum fluctuations
within the RPA approximation and disorder within CPA. This method allows for
the calculation of , magnetization and magnon spectrum as a function of
hole, impurity concentration and temperature. It is shown that, sufficiently
close to , and within our decoupling scheme (Tyablicov type) the CPA for
the itinerant electron gas reduces to the Virtual Crystal Approximation. This
allows, in the low impurity concentration and low density of carriers to
provide analytical expression for . For illustration, we consider the case
of and compare our results with available experimental data.Comment: 5 figures included. to appear in Phys. Rev. B (brief report
Electronic structure, exchange interactions and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As
We complete our earlier (Phys. Rev. B, {\bf 66}, 134435 (2002)) study of the
electronic structure, exchange interactions and Curie temperature in (GaMn)As
and extend the study to two other diluted magnetic semiconductors (GaCr)As and
(GaFe)As. Four concentrations of the 3d impurities are studied: 25%, 12.5%,
6.25%, 3.125%. (GaCr)As and (GaMn)As are found to possess a number of similar
features. Both are semi-metallic and ferromagnetic, with similar properties of
the interatomic exchange interactions and the same scale of the Curie
temperature. In both systems the presence of the charge carriers is crucial for
establishing the ferromagnetic order. An important difference between two
systems is in the character of the dependence on the variation of the number of
carriers. The ferromagnetism in (GaMn)As is found to be very sensitive to the
presence of the donor defects, like As antisites. On the other hand,
the Curie temperature of (GaCr)As depends rather weakly on the presence of this
type of defects but decreases strongly with decreasing number of electrons. We
find the exchange interactions between 3d atoms that make a major contribution
into the ferromagnetism of (GaCr)As and (GaMn)As and propose an exchange path
responsible for these interactions. The properties of (GaFe)As are found to
differ crucially from the properties of (GaCr)As and (GaMn)As. (GaFe)As does
not show a trend to ferromagnetism and is not half-metallic that makes this
system unsuitable for the use in spintronic semiconductor devices
Ferromagnetism in laser deposited anatase TiCoO_{2-\delta} films
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co
substitutionality, ferromagnetism, transport, magnetotransport and optical
properties. Our results show limited solubility (up to ~ 2 %) of Co in the
as-grown films and formation of Co clusters thereafter. For Ti0.93Co0.07O2-d
sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the
presence of 20-50 nm Co clusters as well as a small concentration of Co
incorporated into the remaining matrix. After being subjected to the high
temperature anneal during the first magnetization measurement, the very same
sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc
is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport,
magnetotransport and optical studies also reveal interesting effects of the
matrix incorporation of Co. These results are indicative of an intrinsic
Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.Comment: 14 pages + 9 figure
Optical Conductivity of Ferromagnetic Semiconductors
The dynamical mean field method is used to calculate the frequency and
temperature dependent conductivity of dilute magnetic semiconductors.
Characteristic qualitative features are found distinguishing weak,
intermediate, and strong carrier-spin coupling and allowing quantitative
determination of important parameters defining the underlying ferromagnetic
mechanism
Noncollinear Ferromagnetism in (III,Mn)V Semiconductors
We investigate the stability of the collinear ferromagnetic state in kinetic
exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions
>. Our results suggest that {\em noncollinear ferromagnetism} is commom to
these semiconductor systems. The instability of the collinear state is due to
long-ranged fluctuations invloving a large fraction of the localized magnetic
moments. We address conditions that favor the occurrence of noncollinear
groundstates and discuss unusual behavior that we predict for the temperature
and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects
simplified, version to appear in Phys. Rev. Let
- …
