28 research outputs found
Effects of the Velocity and the Nature of the Inert Gas on the Stainless Steel Laser Cut Quality
Abstract: The effects of inert assisting gas nature and velocity on laser cut quality are investigated. A pure fusion cutting process just above melting point is considered, where the molten steel velocity is given as a function of the two acting forces represented by the pressure gradient and the frictional forces applied by the laminar gas flow. In the case of nitrogen assisting gas, the stainless steel melt film exhibits a visible separation point. The point where the melt flow is separated out from the solid wall depends strongly on the gas velocity. It is pushed down the cut surface when the gas velocity is increased. Furthermore, we have investgated the use of different inert gases (nitrogen, argon and helium) to blow the molten material out of the kerf, and it was noted that the argon and the nitrogen gases evacuate more easily the molten metallic film, compared to the helium gas from their cooling rates point of view. It is concluded that the two first gases are more efficient in laser cutting process of metals. We have studied a 4 mm stainless steel plate thickness without taking into account the transverse movement of the treated workpiece, the numerical solution is obtained by the volume of fluid (VOF) and solidification/melting models, implemented by Fluent CFD software
The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1-CD44 axis.
The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1(+) cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future
by M Sprenger Rapid communications HIV and AIDS in the European Union, 2009 4
D Tubin-Delic, on behalf of the outbreak control team Surveillance and outbreak reports Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumonia
Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program
BACKGROUND: The Assistance Publique-HĂ´pitaux de Paris (AP-HP) institution administers 38 teaching hospitals (23 acute care and 15 rehabilitation and long-term care hospitals; total, 23 000 beds) scattered across Paris and surrounding suburbs in France. In the late 1980s, the proportion of methicillin resistance among clinical strains of Staphylococcus aureus (MRSA) reached approximately 40% at AP-HP.METHODS: A program aimed at curbing the MRSA burden was launched in 1993, based on passive and active surveillance, barrier precautions, training, and feedback. This program, supported by the strong commitment of the institution, was reinforced in 2001 by a campaign promoting the use of alcohol-based hand-rub solutions. An observational study on MRSA rate was prospectively carried out from 1993 onwards. RESULTS: There was a significant progressive decrease in MRSA burden (-35%) from 1993 to 2007, whether recorded as the proportion (expressed as percentage) of MRSA among S aureus strains (41.0% down to 26.6% overall; 45.3% to 24.2% in blood cultures) or incidence of MRSA cases (0.86 down to 0.56 per 1000 hospital days). The MRSA burden decreased more markedly in intensive care units (-59%) than in surgical (-44%) and medical (-32%) wards. The use of ABHR solutions (in liters per 1000 hospital days) increased steadily from 2 L to 21 L (to 26 L in acute care hospitals and to 10 L in rehabilitation and long-term care hospitals) following the campaign. CONCLUSION: A sustained reduction of MRSA burden can be obtained at the scale of a large hospital institution with high endemic MRSA rates, providing that an intensive program is maintained for a long period
Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil
An actinomycete strain designated PAL54, producing an antibacterial substance, was isolated from a Saharan soil in Ghardaïa, Algeria. Morphological and chemical studies indicated that this strain belonged to the genus Saccharothrix. Analysis of the 16S rDNA sequence showed a similarity level ranging between 96.9 and 99.2% within Saccharothrix species, with S. longispora DSM 43749T, the most closely related. DNA–DNA hybridization confirmed that strain PAL54 belonged to Saccharothrix longispora. It showed very strong activity against pathogenic Gram-positive and Gram-negative bacteria responsible for nosocomial infections and resistant to multiple antibiotics. Strain PAL54 secreted the antibiotic optimally during mid-stationary and decline phases of growth. One antibacterial compound was isolated from the culture broth and purified by HPLC. The active compound was elucidated by uv-visible and NMR spectroscopy and by mass spectrometry. The results showed that this compound was a D(-)-threo chloramphenicol. This is the first report of chloramphenicol production by a Saccharothrix species
On the Vortex Formation Effect During the Application of a Nitrogen-Gas Assisted Laser-Fusion Cutting Technique to Stainless Steel
International audienceThis paper focuses on the vortex formation effect during the application of a laser-fusion cutting technique. This industrial technique is typically associated with the ejection of a film of molten stainless steel blown off by a subsonic laminar jet of nitrogen gas used to assist the process. Without taking into account the transverse movement of the workpiece, we consider a 4 mm thick stainless steel plate. The resulting molten metal flow is assumed to be laminar, steady, viscous and incompressible. The numerical results reveal vortex structures adjacent to the walls at the entrance of the kerf, and a pair of eddies outside the kerf. Remarkably, these vortex structures can produce a separation point in the molten film, and thereby they can affect the surface quality of the processed material. The problem is investigated in the framework of a numerical technique available in the Fluent software, based on a volume of fluid (VOF) surface-tracking strategy and the enthalpy method to account for material solidification or melting
Disjunctive and time-indexed formulations for non-preemptive job shop scheduling with resource availability constraints
International audienc
On the Vortex Formation Effect During the Application of a Nitrogen-Gas Assisted Laser-Fusion Cutting Technique to Stainless Steel
International audienceThis paper focuses on the vortex formation effect during the application of a laser-fusion cutting technique. This industrial technique is typically associated with the ejection of a film of molten stainless steel blown off by a subsonic laminar jet of nitrogen gas used to assist the process. Without taking into account the transverse movement of the workpiece, we consider a 4 mm thick stainless steel plate. The resulting molten metal flow is assumed to be laminar, steady, viscous and incompressible. The numerical results reveal vortex structures adjacent to the walls at the entrance of the kerf, and a pair of eddies outside the kerf. Remarkably, these vortex structures can produce a separation point in the molten film, and thereby they can affect the surface quality of the processed material. The problem is investigated in the framework of a numerical technique available in the Fluent software, based on a volume of fluid (VOF) surface-tracking strategy and the enthalpy method to account for material solidification or melting
Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays
International audienceIn this article, space shift keying (SSK) modulation is used to study a wireless communication system when multiple relays are placed between the transmitter and the receiver. In SSK, the indices of the transmit antennas form the constellation symbols and no other data symbol are transmitted. The transmitter and the receiver communicate through a direct link and the existing relays. In this study, two types of relays are considered. Conventional amplify and forward relays in which all relays amplify their received signal and forward it to the destination in a round-robin fashion are considered. In addition, decode and forward relays in which the relays that correctly detect the source signal will forward the corresponding fading gain to the destination in pre-determined orthogonal time slots are studied. The optimum decoder for both communication systems are derived and performance analysis are conducted. The exact average bit error probability (ABEP) over Rayleigh fading channels is obtained in closed-form for a source equipped with two transmit antennas and arbitrary number of relays. Furthermore, simple and general asymptotic expression for the ABEP is derived and analyzed. Numerical results are also provided, sustained by simulations which corroborate the exactness of the theoretical analysis. It is shown that both schemes perform nearly the same and the advantages and disadvantages of each are discussed