5,021 research outputs found

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy

    Full text link
    We consider quantum computations comprising only commuting gates, known as IQP computations, and provide compelling evidence that the task of sampling their output probability distributions is unlikely to be achievable by any efficient classical means. More specifically we introduce the class post-IQP of languages decided with bounded error by uniform families of IQP circuits with post-selection, and prove first that post-IQP equals the classical class PP. Using this result we show that if the output distributions of uniform IQP circuit families could be classically efficiently sampled, even up to 41% multiplicative error in the probabilities, then the infinite tower of classical complexity classes known as the polynomial hierarchy, would collapse to its third level. We mention some further results on the classical simulation properties of IQP circuit families, in particular showing that if the output distribution results from measurements on only O(log n) lines then it may in fact be classically efficiently sampled.Comment: 13 page

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=C(f)/2Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m22n1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200

    Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems?

    Full text link
    We study the power of closed timelike curves (CTCs) and other nonlinear extensions of quantum mechanics for distinguishing nonorthogonal states and speeding up hard computations. If a CTC-assisted computer is presented with a labeled mixture of states to be distinguished--the most natural formulation--we show that the CTC is of no use. The apparent contradiction with recent claims that CTC-assisted computers can perfectly distinguish nonorthogonal states is resolved by noting that CTC-assisted evolution is nonlinear, so the output of such a computer on a mixture of inputs is not a convex combination of its output on the mixture's pure components. Similarly, it is not clear that CTC assistance or nonlinear evolution help solve hard problems if computation is defined as we recommend, as correctly evaluating a function on a labeled mixture of orthogonal inputs.Comment: 4 pages, 3 figures. Final version. Added several references, updated discussion and introduction. Figure 1(b) very much enhance

    General framework for quantum search algorithms

    Full text link
    Grover's quantum search algorithm drives a quantum computer from a prepared initial state to a desired final state by using selective transformations of these states. Here, we analyze a framework when one of the selective trasformations is replaced by a more general unitary transformation. Our framework encapsulates several previous generalizations of the Grover's algorithm. We show that the general quantum search algorithm can be improved by controlling the transformations through an ancilla qubit. As a special case of this improvement, we get a faster quantum algorithm for the two-dimensional spatial search.Comment: revised versio

    On Hausdorff dimension of the set of closed orbits for a cylindrical transformation

    Full text link
    We deal with Besicovitch's problem of existence of discrete orbits for transitive cylindrical transformations Tφ:(x,t)(x+α,t+φ(x))T_\varphi:(x,t)\mapsto(x+\alpha,t+\varphi(x)) where Tx=x+αTx=x+\alpha is an irrational rotation on the circle \T and \varphi:\T\to\R is continuous, i.e.\ we try to estimate how big can be the set D(\alpha,\varphi):=\{x\in\T:|\varphi^{(n)}(x)|\to+\infty\text{as}|n|\to+\infty\}. We show that for almost every α\alpha there exists φ\varphi such that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is at least 1/21/2. We also provide a Diophantine condition on α\alpha that guarantees the existence of φ\varphi such that the dimension of D(α,φ)D(\alpha,\varphi) is positive. Finally, for some multidimensional rotations TT on \T^d, d3d\geq3, we construct smooth φ\varphi so that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is positive.Comment: 32 pages, 1 figur

    Observation of quantum interference as a function of Berry's phase in a complex Hadamard optical network

    Full text link
    Emerging models of quantum computation driven by multi-photon quantum interference, while not universal, may offer an exponential advantage over classical computers for certain problems. Implementing these circuits via geometric phase gates could mitigate requirements for error correction to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in which a geometric phase is embedded in an optical network with no closed-loops, enabling quantum interference between two photons as a function of the phase.Comment: Comments welcom

    Decoherence in Quantum Walks on the Hypercube

    Full text link
    We study a natural notion of decoherence on quantum random walks over the hypercube. We prove that in this model there is a decoherence threshold beneath which the essential properties of the hypercubic quantum walk, such as linear mixing times, are preserved. Beyond the threshold, we prove that the walks behave like their classical counterparts.Comment: 7 pages, 3 figures; v2:corrected typos in references; v3:clarified section 2.1; v4:added references, expanded introduction; v5: final journal versio

    Quantum walks as a probe of structural anomalies in graphs

    Full text link
    We study how quantum walks can be used to find structural anomalies in graphs via several examples. Two of our examples are based on star graphs, graphs with a single central vertex to which the other vertices, which we call external vertices, are connected by edges. In the basic star graph, these are the only edges. If we now connect a subset of the external vertices to form a complete subgraph, a quantum walk can be used to find these vertices with a quantum speedup. Thus, under some circumstances, a quantum walk can be used to locate where the connectivity of a network changes. We also look at the case of two stars connected at one of their external vertices. A quantum walk can find the vertex shared by both graphs, again with a quantum speedup. This provides an example of using a quantum walk in order to find where two networks are connected. Finally, we use a quantum walk on a complete bipartite graph to find an extra edge that destroys the bipartite nature of the graph.Comment: 10 pages, 2 figure

    Geometries for universal quantum computation with matchgates

    Full text link
    Matchgates are a group of two-qubit gates associated with free fermions. They are classically simulatable if restricted to act between nearest neighbors on a one-dimensional chain, but become universal for quantum computation with longer-range interactions. We describe various alternative geometries with nearest-neighbor interactions that result in universal quantum computation with matchgates only, including subtle departures from the chain. Our results pave the way for new quantum computer architectures that rely solely on the simple interactions associated with matchgates.Comment: 6 pages, 4 figures. Updated version includes an appendix extending one of the result
    corecore