8,179 research outputs found

    Staggered fermion matrix elements using smeared operators

    Get PDF
    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 444^4 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0\beta=6.0, 6.2 and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2GeV)=0.62±0.02(stat)±0.02(syst)B_K(NDR, 2 GeV)= 0.62\pm 0.02(stat)\pm 0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one-loop. We do not include any estimate of the errors due to quenching or to the use of degenerate ss and dd quarks. For the ΔI=3/2\Delta I = {3/2} electromagnetic penguin operators we find B7(3/2)=0.62±0.03±0.06B_7^{(3/2)} = 0.62\pm 0.03\pm 0.06 and B8(3/2)=0.77±0.04±0.04B_8^{(3/2)} = 0.77\pm 0.04\pm 0.04. We also use the ratio of unsmeared to smeared operators to make a partially non-perturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be \alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps

    Physical Results from Unphysical Simulations

    Full text link
    We calculate various properties of pseudoscalar mesons in partially quenched QCD using chiral perturbation theory through next-to-leading order. Our results can be used to extrapolate to QCD from partially quenched simulations, as long as the latter use three light dynamical quarks. In other words, one can use unphysical simulations to extract physical quantities - in this case the quark masses, meson decay constants, and the Gasser-Leutwyler parameters L_4-L_8. Our proposal for determining L_7 makes explicit use of an unphysical (yet measurable) effect of partially quenched theories, namely the double-pole that appears in certain two-point correlation functions. Most of our calculations are done for sea quarks having up to three different masses, except for our result for L_7, which is derived for degenerate sea quarks.Comment: 26 pages, 12 figures (discussion on discretization errors at end of sec. IV clarified; minor improvements in presentation; results unchanged

    D-branes, B fields, and Ext groups

    Get PDF
    In this paper we extend previous work on calculating massless boundary Ramond sector spectra of open strings to include cases with nonzero flat B fields. In such cases, D-branes are no longer well-modelled precisely by sheaves, but rather they are replaced by `twisted' sheaves, reflecting the fact that gauge transformations of the B field act as affine translations of the Chan-Paton factors. As in previous work, we find that the massless boundary Ramond sector states are counted by Ext groups -- this time, Ext groups of twisted sheaves. As before, the computation of BRST cohomology relies on physically realizing some spectral sequences. Subtleties that cropped up in previous work also appear here.Comment: 23 pages, LaTeX; v2: typos fixed; v3: reference adde

    Partially quenched chiral perturbation theory without Φ0\Phi_0

    Get PDF
    This paper completes the argument that lattice simulations of partially quenched QCD can provide quantitative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to doing this has been the inclusion of Φ0\Phi_0, the partially quenched generalization of the η\eta', in previous calculations in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate partially quenched chiral perturbation theory without Φ0\Phi_0, and that the resulting theory contains the effective theory for QCD without the η\eta'. We also show that previous results, obtained including Φ0\Phi_0, can be reinterpreted as applying to the theory without Φ0\Phi_0. We contrast the situation with that in the quenched effective theory, where we explain why it is necessary to include Φ0\Phi_0. We also compare the derivation of chiral perturbation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally, we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries and some plausible assumptions.Comment: 45 pages, no figure

    Non-birational twisted derived equivalences in abelian GLSMs

    Full text link
    In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational Kahler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between Kahler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov's `homological projective duality.' Along the way, we shall see how `noncommutative spaces' (in Kontsevich's sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized.Comment: 54 pages, LaTeX; v2: typo fixe

    Chiral corrections to the axial charges of the octet baryons from quenched QCD

    Get PDF
    We calculate one-loop correction to the axial charges of the octet baryons using quenched chiral perturbation theory, in order to understand chiral behavior of the axial charges in quenched approximation to quantum chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral perturbation theory result, c0+cl2mπ2lnmπ2+c_0+c_{l2}m_\pi^2\,\ln{m_\pi^2}+\cdots, we find that the quenched chiral perturbation theory result, c0Q+(cl0Q+cl2Qmπ2)lnmπ2+c2Qmπ2+c_0^Q+(c_{l0}^Q+c_{l2}^Qm_\pi^2)\ln{m_\pi^2}+c_2^Q m_\pi^2+\cdots, is singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure

    Applications of Partially Quenched Chiral Perturbation Theory

    Full text link
    Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B_K and the K+ to pi+ pi0 decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B_K and the K+ decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta are also considered. We find that typical one-loop corrections can be substantial.Comment: 22 pages, TeX, refs. added, minor other changes, version to appear in Phys. Rev.

    Quantization of Fayet-Iliopoulos Parameters in Supergravity

    Full text link
    In this short note we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory (GIT) quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe

    Accumulating evidence for nonstandard leptonic decays of D_s mesons

    Full text link
    The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepancy with experiment may be explained by a charged Higgs boson or a leptoquark.Comment: 4 pages; v2 conforms with PRL versio

    Cluster decomposition, T-duality, and gerby CFT's

    Get PDF
    In this paper we study CFT's associated to gerbes. These theories suffer from a lack of cluster decomposition, but this problem can be resolved: the CFT's are the same as CFT's for disconnected targets. Such theories also lack cluster decomposition, but in that form, the lack is manifestly not very problematic. In particular, we shall see that this matching of CFT's, this duality between noneffective gaugings and sigma models on disconnected targets, is a worldsheet duality related to T-duality. We perform a wide variety of tests of this claim, ranging from checking partition functions at arbitrary genus to D-branes to mirror symmetry. We also discuss a number of applications of these results, including predictions for quantum cohomology and Gromov-Witten theory and additional physical understanding of the geometric Langlands program.Comment: 61 pages, LaTeX; v2,3: typos fixed; v4: writing improved in several sections; v5: typos fixe
    corecore