94 research outputs found
High-density correlation energy expansion of the one-dimensional uniform electron gas
We show that the expression of the high-density (i.e small-) correlation
energy per electron for the one-dimensional uniform electron gas can be
obtained by conventional perturbation theory and is of the form \Ec(r_s) =
-\pi^2/360 + 0.00845 r_s + ..., where is the average radius of an
electron. Combining these new results with the low-density correlation energy
expansion, we propose a local-density approximation correlation functional,
which deviates by a maximum of 0.1 millihartree compared to the benchmark DMC
calculations.Comment: 7 pages, 2 figures, 3 tables, accepted for publication in J. Chem.
Phy
Optical BCS conductivity at imaginary frequencies and dispersion energies of superconductors
We present an efficient expression for the analytic continuation to arbitrary
complex frequencies of the complex optical and AC conductivity of a homogeneous
superconductor with arbitrary mean free path. Knowledge of this quantity is
fundamental in the calculation of thermodynamic potentials and dispersion
energies involving type-I superconducting bodies. When considered for imaginary
frequencies, our formula evaluates faster than previous schemes involving
Kramers--Kronig transforms. A number of applications illustrates its
efficiency: a simplified low-frequency expansion of the conductivity, the
electromagnetic bulk self-energy due to longitudinal plasma oscillations, and
the Casimir free energy of a superconducting cavity.Comment: 20 pages, 7 figures, calculation of Casimir energy adde
Long-range/short-range separation of the electron-electron interaction in density functional theory
By splitting the Coulomb interaction into long-range and short-range
components, we decompose the energy of a quantum electronic system into
long-range and short-range contributions. We show that the long-range part of
the energy can be efficiently calculated by traditional wave function methods,
while the short-range part can be handled by a density functional. The analysis
of this functional with respect to the range of the associated interaction
reveals that, in the limit of a very short-range interaction, the short-range
exchange-correlation energy can be expressed as a simple local functional of
the on-top pair density and its first derivatives. This provides an explanation
for the accuracy of the local density approximation (LDA) for the short-range
functional. Moreover, this analysis leads also to new simple approximations for
the short-range exchange and correlation energies improving the LDA.Comment: 18 pages, 14 figures, to be published in Phys. Rev.
Statistical Mechanics and the Physics of the Many-Particle Model Systems
The development of methods of quantum statistical mechanics is considered in
light of their applications to quantum solid-state theory. We discuss
fundamental problems of the physics of magnetic materials and the methods of
the quantum theory of magnetism, including the method of two-time temperature
Green's functions, which is widely used in various physical problems of
many-particle systems with interaction. Quantum cooperative effects and
quasiparticle dynamics in the basic microscopic models of quantum theory of
magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the
spin-fermion model are considered in the framework of novel
self-consistent-field approximation. We present a comparative analysis of these
models; in particular, we compare their applicability for description of
complex magnetic materials. The concepts of broken symmetry, quantum
protectorate, and quasiaverages are analyzed in the context of quantum theory
of magnetism and theory of superconductivity. The notion of broken symmetry is
presented within the nonequilibrium statistical operator approach developed by
D.N. Zubarev. In the framework of the latter approach we discuss the derivation
of kinetic equations for a system in a thermal bath. Finally, the results of
investigation of the dynamic behavior of a particle in an environment, taking
into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37
- …