35,540 research outputs found
An Improved Measurement of the Hubble Constant from the Sunyaev-Zeldovich Effect
We present a determination of the Hubble constant from measurements of the
Sunyaev-Zeldovich Effect (SZE) in an orientation-unbiased sample of 7 z < 0.1
galaxy clusters. With improved X-ray models and a more accurate 32-GHz
calibration, we obtain H_O = 64+14-11 +/- 14_sys km/s/Mpc. for a standard CDM
cosmology, or 66+14-11 +/- 15_sys km/s/Mpc for a flat LambdaCDM cosmology. In
combination with X-ray cluster measurements and the BBN value for Omega_B, we
find Omega_M = 0.32 +/- 0.05.Comment: 5 pp., Accepted for publication in ApJ
Stability of Influence Maximization
The present article serves as an erratum to our paper of the same title,
which was presented and published in the KDD 2014 conference. In that article,
we claimed falsely that the objective function defined in Section 1.4 is
non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean
Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example
to that claim.
Subsequent to becoming aware of the counter-example, we have shown that the
objective function is in fact NP-hard to approximate to within a factor of
for any .
In an attempt to fix the record, the present article combines the problem
motivation, models, and experimental results sections from the original
incorrect article with the new hardness result. We would like readers to only
cite and use this version (which will remain an unpublished note) instead of
the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was
presented and published in the KDD1
Symmetry and Surface Symmetry Energies in Finite Nuclei
A study of properties of the symmetry energy of nuclei is presented based on
density functional theory. Calculations for finite nuclei are given so that the
study includes isospin dependent surface symmetry considerations as well as
isospin independent surface effects. Calculations are done at both zero and
non-zero temperature. It is shown that the surface symmetry energy term is the
most sensitive to the temperature while the bulk energy term is the least
sensitive. It is also shown that the temperature dependence terms are
insensitive to the force used and even more insensitive to the existence of
neutron skin. Results for a symmetry energy with both volume and surface terms
are compared with a symmetry energy with only volume terms along the line of
stability. Differences of several MeV are shown over a good fraction of
the total mass range in . Also given are calculations for the bulk, surface
and Coulomb terms.Comment: 11 pages, 2 figures, Added a new tabl
signals at LEP2 energies in the Minimal Supersymmetric Standard Model
In this paper we compare and into four-fermion production
at centre-of-mass energies typical of LEP2 and somewhat larger. The theoretical
framework considered is the Minimal Supersymmetric Standard Model. The interest
in exploiting the CERN collider at values of greater than
192 GeV could come from the discovery of Supersymmetric signals during runs at
lower energy. If these indicate that a charged Higgs boson exists in the mass
range \MH\approx95-105 GeV, then a few years of running at
GeV and nominal luminosity could make the detection of such scalars feasible,
in the purely leptonic channel and, for small
\tb's, also in the semi-hadronic(leptonic) one . Charged
Higgs bosons of the above nature cannot be produced by the beam energies
approved at present for LEP2. However, if runs beyond the so-called `192 GeV
cryogenic limit' will be approved by the CERN Council, our selection procedure
will enable us to establish the presence, or otherwise, of charged Higgs bosons
in the mentioned mass rangeComment: 30 pages, latex, epsfig, 12 postscript figures, complete paper
available at ftp://axpa.hep.phy.cam.ac.uk/stefano/cavendish_9615 and at
http://www.hep.phy.cam.ac.uk/theory/papers
Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales?
We present the most precise estimate to date of the clustering of quasars on
very small scales, based on a sample of 47 binary quasars with magnitudes of
and proper transverse separations of \,kpc. Our
sample of binary quasars, which is about 6 times larger than any previous
spectroscopically confirmed sample on these scales, is targeted using a Kernel
Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS)
imaging over most of the SDSS area. Our sample is "complete" in that all of the
KDE target pairs with \,kpc in our area
of interest have been spectroscopically confirmed from a combination of
previous surveys and our own long-slit observational campaign. We catalogue 230
candidate quasar pairs with angular separations of <8\arcsec, from which our
binary quasars were identified. We determine the projected correlation function
of quasars () in four bins of proper transverse scale over the
range \,kpc. The implied small-scale
quasar clustering amplitude from the projected correlation function, integrated
across our entire redshift range, is at \,kpc. Our sample is the first spectroscopically confirmed sample of
quasar pairs that is sufficiently large to study how quasar clustering evolves
with redshift at kpc. We find that empirical descriptions of
how quasar clustering evolves with redshift at Mpc also
adequately describe the evolution of quasar clustering at
kpc.Comment: 16 pages, 8 figures, 6 tables, Accepted for publication in MNRA
Zika Virus: Can Artificial Contraception Be Condoned?
As the Zika virus pandemic continues to bring worry and fear to health officials and medical scientists, Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) have recommended that residents of the Zika-infected countries, e.g., Brazil, and those who have traveled to the area should delay having babies which may involve artificial contraceptive, particularly condom. This preventive policy, however, is seemingly at odds with the Roman Catholic Church’s position on the contraceptive. As least since the promulgation of Paul VI’s 1968 encyclical, Humanae Vitae, the Church has explicitly condemned artificial birth control as intrinsic evil. However, the current pontiff, Pope Francis, during his recent visit to Latin America, remarked that the use of artificial contraception may not be in contradiction to the teaching of Humanae Vitae while drawing a parallel between the current Zika Crisis and the 1960’s Belgian Congo Nun Controversy. The pope mentioned that the traditional ethical principle of the lesser of two evils may be the doctrine that justified the exceptions. The authors of this paper attempt to expand the theological rationale of the pope’s suggestion. In so doing, the authors rely on casuistical reasoning as an analytic tool that compares the Belgian Congo Nun case and the given Zika case, and suggest that the former is highly similar to, if not the same as, the latter in terms of normative moral feature. That is, in both cases the use of artificial contraception is theologically justified in reference to the criteria that the doctrine of the lesser of two evils requires. The authors wish that the paper would provide a solid theological-ethical ground based on which condom-use as the most immediate and effective preventive measure can be recommended in numerous Catholic hospitals as well as among Catholic communities in the world, particularly the most Zika-affected and largest Catholic community in the world, Brazil – 123 million present Brazilian citizens are reported to be Roman Catholic
- …